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ABSTRACT 

We consider the problem of the classification of finite groups according to the 
number of conjugacy classes through the classification of all the finite groups 
with many minimal normal subgroups. 

I. Introduction 

In this work, G will denote a finite group, r = r(G)  the number of conjugacy 

classes, CI~ (gl) = {1}, Clc (g2) . . . . .  C16 (g,) the conjugacy classes of G ordered so 

that [C1G (gl)[ -< [Clc (g~+l)[ for all i = 1, . . . , r ,  A = Ac = ([ C~ (gl)[ . . . .  ,[ Cc(g,)[), 

/3(G) the number of minimal normal subgroups of G and a ( G )  the number of 

conjugate classes of G not contained in the socle S(G) .  

The possibility of classifying finite groups according to the number r (G)  and 

to some properties of their conjugacy classes was suggested in [2]. Around 1910, 

G. A. Miller and W. Burnside (cf. [2], Note A) derived those finite groups with 

r(G)<= 5. D. T. Sigley (cf. 119]) in 1935 studied those with r ( G ) =  6, and for 

r (G)  = 7 he derived those with non-trivial centre, but his list for r ( G ) =  6 was 

incomplete. In 1966, J. Poland (cf. [17]) obtained all finite groups with r (G)  = 6 

and r( G ) = 7. 

In 1974 L. F. Kosvintsev (cf. [12]) classified all finite groups with exactly eight 

conjugate classes working with an I.B.M. and needing a large amount of 

calculations to select the valid solutions among those proposed by the computer. 

In 1976 (cf. [16]) V. A. Odincov and A. I. Starostin got all finite groups with 

r (G)  = 9. 

Received July 1, 1984 and in revised form January 1, 1985 

305 



306 A. VERA LOPEZ AND J. VERA LOPEZ Isr. J. Math. 

In 1978, A. G. Aleksandrov and K. A. Komissarcik (cf. [1]) classified all simple 

finite groups with r(G)<= 12. 

Other works related to the above-mentioned problems are those of A. Mann 

(cf. [14]), W. Feit and J. Thompson (cf. [6]), M. Suzuki (cf. [20]) and the work of 

F. M. Markell (cf. [15]), where he classified the supersolvable groups with many 

conjugacy classes with different cardinality. He proved that if 

]CI~ (g~)] ~ ICI~ (gJ)l for every i / j  and G is supersolvable, then G is isomor- 

phic to E3. 
In this paper, we approach the problem of the classification of finite groups 

according to the number r(G) in a different way to the one used by the 
aforementioned mathematicians. We consider this problem through the classifi- 

cation of all the finite groups with many minimal normal subgroups. 

Since each minimal normal subgroup is generated by the elements of a 
conjugacy class, our problem is equivalent to the classification of the families 

qbj = {G I/3(G)= r(G)-j} for small values of the natural number j. 

In this paper, the families qb. i = 1,2 . . . . .  10 are classified. Moreover, as an 

immediate corollary we find not only the previously known classification of finite 

groups with r(G)_-< 9, but also that of those finite groups satisfying one of the 

following conditions: 

(i) r(G)= 10, 

(ii) r(G)= 11, 
(iii) r ( G ) =  12 and /3 (g )> l ,  
(iv) r ( G ) =  13 and /3(G)>2,  

(v) r ( G ) =  14 a n d / 3 ( G ) > 3 ,  
(vi) r(G) = n and /3(G) = n - a with 1 =< a -<_ 10, for each integer n -> 15. 

The analysis of the groups in ~j is done in three steps. First we study 
~j  = ~j f'l F, F being the class of finite nilpotent groups (cf. [22]). Afterwards we 

study the groups of dOj - ~ j  with S(G) non-solvable (Theorem 3.2) and finally 

we get all the groups in dOj - ~ j  with S(G) abelian, by fixing the number a(G) 
and studying the solutions of the associated equations (1) and (2) (Lemmas (2.1) 

and (2.2) with N = S(G)). These yield all possible structures of S(G) and all 

possible actions by conjugation of G/S(G) over S(G), as well as the associated 

values of r(G). 
All reasoning corresponding to groups with different values of r(G) and the 

same a(G) is no longer needed. Moreover, many of the r-tuples (rnl . . . . .  m,) 

that are solutions of the equation: 

(,) 1=  ~ 1/m,, m,-- IC~(g,)l 
i = 1  
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and for which no corresponding group exists do not show up in our analysis. This 
eliminates the sophisticated arguments used to show that those r-tuples do not 
have a corresponding group, simplifying all the proofs known up to now for the 
cases r( G ) <= 9. 

In this paper, the following notation will be used throughout: 

]A] denotes the cardinal of the set A, 
0 is the symbol of disjoint union, 

C~" denotes an elementary abelian p-group of order p", 

C,, denotes a cyclic group of order m, 

Y denotes a direct product of elementary abelian groups, i.e., a group of the 
• . • C m t  type Cp~' × × ,,,  

H, a direct product of elementary abelian groups of odd orders, 
N xrK, semidirect product of N and K with fixed-point-free action f (abbrev. 

f acts f.p.f•), i.e., a Frobenius's group of kernel N and complement K, 

N x ~ K ,  semidirect product of N and K, with N as a normal subgroup with 
respect to the action A. 

We use the standard notation for the non-abelian simple groups that appear in 
this work• 

P1 denotes a 2-group of type PSL(3,4), i.e., isomorphic to a Sylow 2-subgroup 
of PSL(3,4), 

P2, a 2-group of type PSU(3,4), 
P3, a 2-group of type Sz(8), 

O1, a non-abelian 3-group of order 3 3 and exponent 3, 
O2, a non-abelian 3-group of order 3 3 and exponent 9, 
E,,, the symmetric group of degree m, 
D2,,, the dihedral group of order 2m, 
O2-, the quaternion group of order 2"1, 
SD2~, the semidihedral group of order 2"1, 

HolG, holomorph of G, 

Hol(G,K), relative holomorph of G and K, 

C~.PSL(2,7), the unique non-split extension of C~ by PSL(2,7), 

(N, N2)K, a direct product of subgroups N~ and N2 with amalgamated subgroup 
K, 

2"F~q, j-th group of order 2" of the family F, with genus cj (Hall-Senior's 
notation, cf. [22]), 

2"Fi, the set of groups of order 2" of the family F~ (cf. [22]), 
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SL(2,3). C4, the unique extension of C2 by Y4 which has Sylow 2-subgroups of 

type O~6. 

If S, T are subsets of G, we write S T for the subset consisting of all conjugate 

elements x y = y-lxy with x E S, y E T. Thus 

sT={xylx S, yeT}. 
Also we define: 

F,: = C' ,  F,.2 = C'3×:C2, F,.3 = C2'xfC3, 
F,.4 = C'5×fC4 = (1-I(a,))×f(b) with relations: a~ = a~ for every i, 

E.5 = C'TXfC6 = (l-l(a,))×f(b) with relations: a~= a~ for every i, 
Ft6 3t = • = C2 xfC7 (IJ(a~)x(b~)x(c~))xt(d) with relations: a : =  b~, be = c~, c:  = 

a~b~ for every i, 
F,.7 = C~'×:C~ = (1-l(a,)x (b,))x:(c) with relations: a7 = b,, b7 = a,b, for every 

i, 
F,.8 = C'u xfC~o = (l-I(a,))xf(b) with relations: a~= a~ for every i. 

Finally, if O ~ S C_ G, we define 

r (S) = I{c1  (g)lCl  (g) n s/o}1. 

Clearly, r~ (S) is the number of conjugacy classes of O that compose the normal 

set U : c s  ~, and if U ~ 6 x ~ S ( G ) = U i = ~ C l 6 ( x , )  with 

(hence t = r~(xS(G))), we define 

A, = (I C~(x,) l , . . . , I  C~(x,)l). 

Now, the finite groups satisfying the conditions r(G)<= l l ,  and r (G)=  12, 

f l ( G ) >  1, are described in Tables 1-4, which list the r-tuples h = (m~ . . . . .  m~) 

and the structures of G/S(G) .  

2. Preliminaries 

In the following, N is a normal subgroup of G, (~ = G/N, CI~(£j) = 

{1},... ,Clc (2,) are the conjugacy classes of t~, and 

Tx, = {g E a 1C16 (g) t3 xjN• O} = CI~ (xjnl) 0 "" 0 Clc (xjn,/) 

with n~ E N and sj = r~(xiN). We have: 

LEMMA 2.1. (i) 

(1) r (G - N )  = ro(x,N). 
i=2 
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TABLE 1. The finite groups satisfying r(G) <= 9 

r(G) G A G/S(G) 

1 {1} (1) 

2 C2 (2,2) 1 

C 3 (3,3,3) 1 

3 E3 (6,3,2) C_, 

C. (4,4,4,4) C2 
C2 × C2 (4,4,4,4) 1 

4 D,o (10.5,5,2) C2 
A4 (12.4,3,3) 6"., 

G 15,5,5,5,5) 1 
D~ (8, 8, 4, 4, 4) C2 x C. 
O~ (8,8,4,4,4) C2 x C_~ 
D,4 (14,7,7,7,2) C2 
C, xrC, (20,5,4,4,4) C, 
CTxfC~ (21,7,7.3,3) C~ 
E~ (24,8,4.4,3) £~ 
A~ (60,5,5,4,3) 1 

C~ (6,6.6,6,6,6) 1 
C~ x E3 (12,12,6,6,4,4) C2 
D G  (12,12,6,6,4,4) (7,_ 
D~8 (18,9,9,9,9,2) ~3 
C~×tC2 (18,9,9,9.9,2) C_. 
C]xtC 4 (36,9,9,4,4,4) C4 
C~ x t O, (72, 9, 8, 4, 4, 4) O~ 
PSL(2,7) (168,8,7.7,4,3) 1 

C~ (7,7,7,7,7,7,7) 1 
D,6 (16,16,8,8,8,4,4) D8 
O.~ (16,16,8,8,8,4,4) D~ 
S D ~ 6  (16,16,8,8,8,4,4) D~ 
D22 122,11,11,11,11,11,2) C2 
SL(2,3) (24,24,6,6,6,6,4) A, 
C.3 x t C~ (39,13,13,13,13, 3, 3) C~ 
C T x t C ~  (42,7,6,6,6,6.6) C6 
C.3 x t C 4  (52,13,13,13,4.4,4) 6"4 
C.. xtC s (55,11,11,5,5,5,5) C5 
~s (120,12,8,6,6,5,4) C2 
A 6 (360,9,9,8,5,5,4) 1 

G (8,8,8,8,8,8,8,8) G 
G x  G (8,8,8,8,8,8,8,8) G 
C2xC:xC2 (8,8,8,8,8,8,8,8) 1 
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TABLE 1 (contd.) 

r(G) O A GIS(G) 

C~ x D., (20,20, 10, 10,10,10,4,4) C, 
C~ ×~ C~ (20,20,10,10,10,10,4,4) C~ 
C2 × A~ (24.24,8,8,6,6,6,6) C.~ 
D _ . ,  (26,13,13,13,13,13.13.2) C~ 
C~ × r C 3  (48.16,16,16,16,16,3,3) C~ 
C] xtC ~ (48,16,16,16,16,16,3,3) A~ 
GL(2,3) (48,48,8.8,8,6,6,4) ~ 
SL(2,3). G (48.48,8.8,8.6,6,4) E~ 
C~×tC. (56,8,7.7,7.7.7,7) C~ 
C,7 xfC4 (68,17,17,17,17,4,4,4) C. 
C..~ xfC~ (78,13, 13,6.6,6,6,6) C~ 
C 4 xtC ~ (80,16,16,16,5, 5,5, 5) C~ 
HoI(C~,C~×tC3 ) (168,24.7,7,6,6,6,6) C~xrC ~ 
C~ > ( f O x  (200,25,25.25.8,4,4.4) O~ 
C~ × t D C 3  (300,25,25,12,6,6,4,4) DC., 
C~×~SL(2,3) (600, 25, 24, 6,6, 6, 6,4) SL(2.3) 
PSL (2, I 1) (660.12.11,11,6,6.5,5) 1 
M. = PGL* (2,9) (720, 16.9,8,8,8,5,4) C~ 

C~ (9,9,9,9,9,9.9,9,9) C3 
C.~ x C, (9,9,9,9,9,9,9,9,9) 1 
C~ × E~ (18,18,18.9,9,9,6,6.6) C~ 
C,, ×^ C2 (24.24.12.12.12,12, 12,4,4) C~ 
C~ x~ D~ (24, 24,12,12,12,12, 12,4, 4) C~ 
C~ x~ O~, (24,24,12,12.12,12,12,4,4) C~ 
D~. (30, 15,15,15,15,15.15,15.2) C, 
E3 × E~ (36,18,18,12,12,9,6,6,4) C~ 
C,. × t C 3  (57,19,19,19,19,19,19, 3.3) C~ 
C,~ x~ (74 (60,30,15,15,15,12,6,4,4) C, 
C~ ×tC . (72,9,8,8,8,8,8,8,8) C~ 
C~ x~ D~ (72,18, 18, 12, 12,8,6,6,4) D~ 
C]. x~ D~. (72,36,24,12,9, 9.9,4,4) ~ 
(C3 × A~)x~ C~ (72,36,24.12,9,9,9,4,4) E~ 
C,,~ × ¢ C , .  (114,19,19,19.6,6.6,6,6) C,, 
SL(2.5) (120,120.10, 10,10,10,6,6,4) A~ 
HoI(C~,SD.6) (144,18,16,12,8,8,8,6,4) SD,~ 
P, xrC ~ (192, 64,16,16,16, 16, 16, 3.3) C~ xtC~ 
P2 x t C 3  (192,64,16,16,16,16.16,3, 3) C~ xtC~ 
PGL (2, 7) (336,16,12,8,8,8,7,6,6) C. 
SL(2,8) (504, 9,9, 9,9,8, 7,7, 7) 1 
C~ x,, A5 (960,64,16,16.16,16,5,5, 3) A~ 
PSL(2,13) (1092,13,13,12,7,7,7,6,6) 1 
C~xtSL(2,3 ) (1176,49,49,24,6,6,6,6,4) SL(2,3) 
C~ xr SL(2,3). C~ (2352,49,48,8,8,8,6,6,4) SL(2,3). C4 
A, (2520,36,24,12,9,7,7,5,4) 1 
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(ii) If Yj is conjugate to ~j in G, then re, (x~N) = r¢; (yiN). 
(iii) 1/[Ca(£j)] = Z~=~ i/[Cc,(xjnk)[ (cf. [16]) and o(~,.) divides [C¢(x, nk)] for 

every k = 1 . . . .  , sj. 

(iv) r~(xjN) = 1 if and only if lCo(x,)l--I Furthermore in this case, we 

have xjN C_ CIG (xj) (cf. [16]). 

TABLE 2. The finite groups with exactly ten conjugacy classes 

G A G/S(G) Reference 

Clu 
C2×D~ 
C2 x Q, 
Gx~G 
(Gx G)x~,G 
G x ,  C~ 
(Gx  G)x,~ G 
C x , G  
C~ x Du 
Ci7 xIC2 
Gx,  C 
G x Hol G 
q x (C xr C) 
C~xg4 
(G x G)x, DG 
Q)j X~l C: 
Oi Xx 2 C2 
O2xA C2 
C~x,,~, 
C~ x,: C. 
(Gx G)x,~2~ 
( C x  C ) x , C  
C~ x,: C 
(G x C,)x j, G 
(G x G) xr~ G 
(G x G) xr~ G 
C~,~ x r G  
C,_xA~ 
C]~ xrC~ 
(G x G)xrC o 
C~x,D., 
HoI(C~,SL (2,3)) 
P, xtC~ 
(G x G)xrD G 
(G x C)xrO, /  
Mu 
(C,, x C,,)xr SL(2,5 ) 
PSL(3,4) 

(10, 10, 10, 10, 10, 10, 10, 10, 10, 10) 1 (2.17) 
116, 16, 16, 16,8,8,8,8,8,8) C~ (2.17) 
116,16, 16,16,8,8,8,8,8,8) C~ (2.17) 
(16,16,16,16,8,8,8,8,8,81 C~ (2.t7) 
(16,16, 16,16,8,8,8,8,8,8) C?. (2.17) 
(16, 16,16,16,8,8,8,8,8,81 D~ (2.17) 
(16, 16, 16, 16,8,8,8,8,8,8) C~ (2.17) 
(28,28,14, 14, 14, 14,14, 14,4,4) C2 12.19) 
(28,28, 14,14,14,14, 14, 14,4,4) C2 (2.19) 
(34,17,17,17,17,17,17,17,17,2) C2 (2.18) 
(40,40, 10, 10,8,8,8,8,8,8) C~ (4.2) 
(40,40,10,111,8,8,8,8,8,8) C4 (4.2) 
(42,42,14,14, 14, 14,6,6,6,6) C~ (4.1) 
(48,48, 16,16,8,8,8,8,6,6) Y, (4.2) 
148, 48. t6,16,8,8,8,8,6,61 E~ (4.2) 
(54,54,54,9,9,9,9,6,6,6) C'-, xtC 2 (4.2) 
(54,27,18,18,9,9,9,6,6,6) C, x ~ (4.11) 
(54,27,18,18,9,9,9,6,6,6) C, x Y-3 (4.11) 
(96,32,32,32, 16,8,8,8,8,3) x, , ,  (4.2) 
(96,32,24, 16,16,8,6,6,6,6) C2 x A4 (4.8) 
(96,32,32,32, 16,8,8,8,8,3) sZ, (4.2) 
(96,32,24, 16,16,8,6,6,6,6) C2 x At (4.8) 
(96,32,24, 16, 16,8,6,6,6,6) C: x A~ (4.8) 
(100, 25, 25, 2,5, 25, 25, 25, 4, 4, 4) C4 (220) 
(100, 25, 25, 25,25,25,25,4,4, 4) C4 (2.20) 
(100,25,25,25,25,25,25,4,4,4) C4 (2.20) 

9 ') ") ") (100,,5,,5,25,25,,5,,5,4, 4,4) Hol C, (4.2) 
(120,120,10, 10, 10, 10,8,8,6,6) 1 (3.2) 
1136, 17, 17,8,8,8,8,8,8,8) C~ (4.8) 
(150,25, 25, 25, 25, 6,6, 6,6, 6) C, (4.2) 
(160,32,32,32,8,8,8,8,5,51 D,, (4.2) 
(216,27,18,18,9,9,24,6,6,4) SL12,3) (4.5) 
(448.64, 16,16,7,7, 7,7,7,7) C~ xtC7 (4.8) 
(588,49,49,49,49,12,6,6,4,4) DC3 (4.2) 
(784,49,49,49,16,8,8,8,4,4) O., (4.5) 
(7920,48,18,11,11,8,8,8,6,5) 1 (3.2) 
(14520,121,120,10,10,10,111,6,6,4) SL (2,5) (4.11) 
(20160,64, 16,16, 16,9,7,7,5,5) 1 (3.2) 
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PROOF. (i) We have Clc (g)___ G - N if and only if g is conjugate to £j for 
some j _-> 2, i.e. if Clc (g) N xjN~ Q for some j _-> 2. Moreover, 

(CIG(g)C'IxiN)D(Cla(g)Nx~N)=Q for every j / 1 ,  

because ij is not conjugate to £~ in G, hence r o ( G -  N ) =  Y~=2ro(xjN). 
(ii) If £j and ]j are conjugate in t3, then xiN and y~N are conjugate in G, hence 

ra (xiN) = ro (y;N). 

TABLE 3. The finite groups with exactly eleven conjugacy classes 

G A G/S(G) Reference 

Cil 
O, 

D32 
032 
SD3~ 
25 F~ a 
2SF~a~ 
25F~a~ 
25F7a~ 
2T7a3 
Cj~ xfC2 
(G x G)XrC~ 
((O~O~)<.) x. C~ 
O , x . ( G x  Q) 
C~l xtCm 
C,., x r C, 
C., XrC~ 
C,oXrCo 
C~ xrC~ 
C~ x, DC~ 
(C4 x C~) x~ DCs 
(C, x C.)xrC ~ 
C2c, X f C7 
C 4 ×, Hol C5 
SL(2,7) 
(C~ x COx10~ 
Hol (C3 x C,) 
PGL(2,9) 

HoI(C~) 
C~. PSL (2, 7) 
PFL(2,8) 
PSL (2,17) 
Sz(8) 

(11,11,11,11,11,11,11,11,11,11,11) 1 (2.17) 
(27,27,27,9,9,9,9,9,9,9,9) C3 × C3 (2.17) 
(27,27,27,9,9,9,9,9,9,9,9) C, × C, (2.17) 
(32,32,16,16,16,16,16,16,16,4,4) D,~ (2.17) 
(32,32, 16, 16, 16,16,16,16,16,4,4) D,~ (2.17) 
(32,32, 16,16, 16,16,16.16,16,4,4) D,,, (2.17) 
(32,32,16,16, 16,8,8,8,8,8,8) C2 x D~ (2.17) 
(32,32,16,16, 16,8,8,8,8,8,8) C2 × D~ (2.17) 
(32,32,16,16,16,8,8,8,8,8,8) (C4x C,_)x,,C, (2.17) 
(32,32,16,16,16,8,8,8,8,8,8) (C4x C,)x,,C, (2.17) 
(32,32,16,16,16,8,8,8,8,8,8) (C~x C2)xA, C2 (2.17) 
(38,19,19,19,19,19,19,19,19,19,2) Q (2.18) 
(75,25,25,25,25,25,25, 25, 25,3,3) C, (2.19) 
(96, 96,16,16,16,16,16,6, 6,6, 6) C 4 XrC 3 (4.8) 
1108,54,18,18,12,12,12,9,6,6,6) £3 x £, (4.11) 
(110,11,10,10,10,10,10,10,10,10,10) C,,, (4.14) 
(116,29,29,29,29,29,29,29, 4,4.4) C~ (2.20) 
(155.31,31,31,31,31,31,5.5,5,5) G (4.1) 
(171,19,19,9,9,9,9,9,9,9,9) C~ (4.11) 
(186,31,31,3t,31,31,6,6.6,6,6) C~ (4.2) 
(192,64,48,16,16,8,8,8.8.6,6) (C2 x C,)x, DC3 (4.14) 
(192,64,48, 16, 16,8,8,8,8,6,6) (C, x C2)x~ DC3 (4.14) 
1200,25,25,25,8,8,8,8,8,8,8) C~ (4.8) 
(203, 29, 29, 29, 29, 7,7, 7, 7,7, 7) C7 (4.5) 
(320,64,32,16,16,8,8,8,8,8,5) Hol Cs (4.2) 
(336,336,14,14, 14, 14,8,8,8,6,6) PSL(2,7) (4.2) 
(392,49,49,49,49,49,49,8,4,4,4) O~ (4.1) 
(432,54,48,18,12,9,8,8,8,6,6) GL (2,3) (4.8) 
(720,20,16,10,10,10, 10,9,8,8,8) C2 (3.2) 
(720,48,48,18,18,16,8,8,6,6,5) C_, (3.2) 
(1344,192,32,32,16,8,8,7,7,6,6) PSL(2,7) (4.2) 
(1344,192,32,32,16,8,8,7,7,6,6) PSL(2,7) (4.2) 
(1512,27,24, 18, 18,9,9,9,7,6,6) C, (3.2) 
(2448,17,17,16,9,9,9,9,8,8,8) 1 (3.2) 
(29.120,64,16,16,13,13,13,7,7,7,5) 1 (3.2) 
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s i (iii) We have T~, = [,.Jg~x~N, hence [CIe (2j)[. I NI = Ek=, 1C16 (xjnk)[, there- 
fore 1/I Cc(2j)[ = E~=~ 1/[ Co(xjnk)l. Moreover o(2j) = o(x, nk) divides I C (x,n )l 
for every k. 

(iv) It is an immediate consequence of (ii). 

LEMMA 2.2. Suppose that N is abelian. We have: 
(i) If x, y E Tx,, then I Cc(x)f'l N[ = I C~(y) n N I and o(2j).I CG(xi) N N I is a 

divisor of ICe (xjnk )1 for every k. Further, if Y,j E (~), then there exists z" E T~, such 
that o(e).  I Cc(xj) 71N I divides I 

(ii) r~(xjN)<-_lC~(xj)n N[ and the equality holds if and only if Cc(xiw)= 
Ce(Yj) for every w E, N, where C~(xjw)= Cc(xjw)N/N. 

TABLE 4. The finite groups satisfying r(G) = 12 and/3(G) > 1 

G b G/S (G) Reference 

CzxC6 (12,12,12,12,12,12,12,12,12,12,12,12) 1 (2.17) 
C,2 (12,12,12,12,12,12,12,12,12,12,12,12) C, (2.17) 
C~ ×~ C~ (24,24,24,24,12,12,12,12,8,8,8,8) C~ (4.2) 
C~ x E~ (24,24,24,24,12,12,12,12,8,8,8,8) C~ (4.2) 
C~ x E3 (24,24,24,24,12,12,12, 12,8,8,8,8) Cz (4.1) 
C2 x DC3 (24,24,24,24,12,12,12,12,8,8,8,8) C2 (4.1) 
C3 x D . , ,  (30,30,30,15,15, 15,15,15, 15,6,6,6) C, (2.20) 
C~x(C, x t C 2 )  (36,36,18,18,18,18,18,18,18,18,4,4) E3 (4.2) 

.C~ x~ C~ (36, 36,18,18,18,18,18,18, 18,18,4, 4) E3 (4.2) 
C~ x A, (36,36,36,12, 12, 12,9,9,9,9,9,9) C3 (4.2) 
C~ x, C4 (36, 36,18,18,18,18,18,18,18,18,4,4) C, (2.19) 
6'2 x (C~ x tQ ) (36,36,18,18,18,18,18,18,18,18,4,4) C~ (2.19) 
C~ x~ C~ (36, 36, 36,12,12,12,9,9,9,9,9,9) C, (4.2) 
(C3 x CT)xrC,. (42,21,21,21,21,21,21,21,21,21,21,2) C2 (2.18) 
C~ x~ O,~ (48,48,24,24,24,12,12,12,12, 8,8, 4) D~ (4.2) 
C3 x^D,6 (48,48,24,24,24, 12,12, 12, 12,8,8,4) D~ (4.2) 
C~ x, S D 1 6  (48,48,24,24,24,12, 12, 12,12,8;8,4) D~ (4.2) 
E3 x D,o (60,30,30,30,20,15,15, 12,10, 10,6,4) C~ (4.2) 
C~ x A C8 (72,72,18,18,18,18,8,8,8,8,8,8) C4 (4.2) 
-~,3 x A~ (72,36,24,24, 18,18,12,9,9,8,6,6) C, (4.2) 
C 2 )'( (C~ xfC4) (72,72,18,18,18,18,8,8,8,8,8,8) (?4 (4.2) 
(C~ x C~)xtC ~ (84,28,28,28,28,28,28,28,28,28,3,3) C3 (2.19) 
(C~xOs)x~C~ (96,96,32,32,16,16,16,16,6,6,6,6) A~ (4.2) 
C ] x A C 4  (108,54,27,27,27,27,27,27,12,6,4,4) C4 (4.1) 
(C3 x C~)x~ C~ (126,63,21,21,21,18,18,9,9,6,6,6) C6 (4.2) 
C_, × (C~ ×t-O.) (144,144,18,18,16,16,8,8,8,8,8,8) O~ (4.2) 
C~x, (C~ x, C~) (144,144,18,18,16,16,8,8,8,8,8,8) Q~ (4.2) 
Hol(2T2h, C~) (96,96,32,32,16,16,16,16,6,6,6,6) As (4.2) 
(C~ x (?7) x~ C, (168,56,28,28,28,28,24,8,6,6,6,6) 6"6 (4.2) 
C~ x^ O~ (216,108,27,27,27,24,12,12,12,12,4,4) O~ (4.2) 
PSL(2,7) x C2 (336,336,16,16,14,14,14,14,8,8,6,6) 1 (3.2) 
(Asx C~)x,C~ (360,180,24,18,15,15,15,12,12,9,6,4) C2 (2.20) 
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(iii) I f  Co ($,) = (~,), then ro (xjN) = I Co (x,) 0 N I and I Co (x~nk )l = l Co (x,)l = 

o(~,).ICo(x,)n Nl. 
(iv) I / I C e  (~j)l = P ~', with p a prime number, then there exist natural numbers t~ 

such that I Co(x,~)l = p'~. m with m = I Op,(Co(x,) f3 N)I , for every k = 1 . . . . .  s,. 
Further, we have the equation 

(2) l /p e' = (1/m )" ( ~k=l 1/p'~ ) ; 

O(i,) divides p'~ for every k, and m divides INI. 
(v) I f  o(~)  = p', p a prime number and p X lee(x,) n NI, then p X INI. 

PROOF. (i) If x, y E T~j, then there are g ~ G and w E N such that x = y~w, 
hence Co(x) f )  N = (CG(y)f3 N) g because N is abelian. Consequently, 

leo(x) n NI = leo(y) n NI. Moreover, (x, nk) (Co(x, nk)f3 N)  is a subgroup of 
Co (xsnk) of order o (Yj). I Co (xs) fq N I and if £, @ (~), then there is an u E N such 
that x, = zeu for some integer e, hence z" E T~j and clearly o(~?). ICo(xj)f3 NI 
divides I Co (z ~)l. 

(ii) We have 

l eo(xsnk)l = I eG(x, nk) f3 NlleG(xink)l = I eo(x i )  f3 NIICo(X, nk)l , 

sO the relat ion ( I )  yields 

s i 

]ll eo(~,)l -- Oll eG(x,) n Nl). ( ~, ]ll eo(x,n~ )l ) 

hence 

s i 

(3) lee(x,) n N I-- ~, I eo(~,)I/l eo(x,n~)l. 

Also, I C~(x, nk)l ~ I Co(x, nk)l = l Co(~,)l.  Thus (3) implies leG(x,) f) N[ >= s, and 
the equality holds if and only if Co(x,w) = Co(~s) for every w E N. 

(iii) It follows from (ii). 
(iv) Let Q be a q-Sylow subgroup of C~(x,) with q ~  p a prime number. Since 

Co(~j) is a p-group, Q is a subgroup of N, hence Q is a Sylow q-subgroup of 

C6(x,) f3 N. Thus, we have I C~(x,)l = p',m with m = [Op,(Cc (xj) f3 N)[ because 

Co(x,) t3 N is abelian. Similarly, Co(X, nE) = Ca(~,) and Co(x,) f3 N = 
Co (x,n~) f3 N imply that there exists a natural number tk such that 16"o (x, nk)[ = 

p'~ .m. This yields the relation (2). 
(v) Set o(£ , )=  p', x, = ZlZ2 with [z~,z2] = 1, o(zO = pS and p ~" o(z2). Then 
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x f ' E  N and x[ ~ = z p', hence z2 E N and CG(xj) fq N = Ca(zl) N N, because N is 

abelian. Thus if p divides I N I and P is a p-Sylow subgroup of G containing zl, 

then t ~ Z(P)fq Op(N)<= Ca(z~)N N, hence p divides ICG(xj) fq NI. 

REMARK. We will use Lemma (2.2) with N = S(G) abelian. Once the 

structure of G/S(G)  is fixed, we consider the tuple Ad. Then the relation (2) 

yields all the possible solutions of A~ for each Yj such that Co(£j) is a p-group. 
For example, if rG(xfl(G)) = 2 and I Ce(xj)l = pej, then we have 

1/p ~, = ( l /m) .  (1/p" + 1/p' 0 with t~ -<_ h, 

so either ( p = 2 ,  t~=t2, m = 1  and e j = h - 1 ) ,  or (ej = h ,  m = l + p  ':-'1, and 

s =< t~ =< ej = h, if o(xj) = p'). Thus with the fixed structure of G/S(G),  equa- 

tions (1) and (2) will be used to obtain the number r(G) and the tuple A~, once 

the structure of S(G) and the action by conjugation of G/S(G)  over S(G) have 

been determined. 

LEMMA 2.3. Let N be a normal subgroup of G and G = G/N. Then 

(i) I Ce(~)l_-<lCo(x)l for each x ~ G. 
(ii) I f  r(G) = re (G - N) + 1, then I Cc(x)l = I Ce(~)I for each x E G - S and 

consequently either G is a Frobenius group with kernel N or there exists a prime p 
dividing both IG/NI and ISl  such that either N or GIN  is a p-group. 

Furthermore, i[ N is a p-group and G is neither a p-group nor a Frobenius group of 

kernel N, then Op,(G/N) = {1} and each p'-subgroup T of G acts f.p.f, on N. In 

particular, every Sylow subgroup of T is either cyclic or a generalized quaternion 
group and T does not possess any subgroup of type Cql xr Cq2 with primes ql / q2. 

PROOF. 

(ii) Set 
(i) Follows from Lemma (2.1) (iii). 

(4) G = N U  CIG(yl) I] . .-  0 Clo(y,). 

By hypothesis, we have 

(5) O = {i t 0 Cl~ (;1) 0 "'" 0 CI~ 07,). 

As I (y,)l_-< IClo (9,)1" I NI for every i, by taking cardinals in (4) and (5) we 

deduce that I Co(y,) l  = I hence G satisfies (F2) and the result holds (cf. 
[3] and [4]). 

(The authors wish to acknowledge the referee's remarks on Lemma 2.3(ii).) 

LEMMA 2.4. Let T be a non-abelian 2-group of order 2". We have: 
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(i) There exists g ~ T such that ] CT(g)] = 4 if and only if T is isomorphic to one 

of the following groups : D2°, Q2. or SD2,. Furthermore, in this case, there is an 

a E T such that T/(a)~- C2 and T does not have any subgroup isomorphic to C7 

with m 53 .  

(ii) If  there exists g ~ T such that ] C~(g)] = 8, then T has sectional rank at most 

4, hence T does not have any subgroup isomorphic to C7 with m ~ 5. (cf. [7] and 

[9]). 

LEMMA 2.5. Let G be a finite group with S (G)  abelian. We have: 

(i) I f  there exists g E G such that ] Cc (g)] = 4m with m an odd number and o (g) 

is a power of 2, then 0 2 ( S ( G ) ) ~  C~. 

(ii) If  there exists g E G such that ] C~(g)] = 8m with m an odd number and 

o(g) is a power of 2, then 0 2 ( S ( G ) ) ~  C~. 

PROOF. This result is an immedia te  consequence  of (2.4). 

LEMMA 2.6 (Galois). Let G be a solvable group such that / 3 ( G ) =  1 and 

Cc ( S ( G ) ) = S ( G ). Then S ( G ) has a complement in G and all the complements of 

S (G)  in G are conjugates (cf. [10, th. 3.3, p. 160]). 

LEMMA 2.7. Let N ~- G be such that N is a product of some minimal normal 

subgroups of G. Then, if K is a normal subgroup of G such that K ~ N, there exists 

E ~- G such that N = K × E (cf. [18 Ex. 414, p. 171]). 

LEMMA 2.8. Le tA  ~- G be such thatA is abelian and g.c.d. (] G / A  ], ]A ]) = 1. 
If  B is a direct factor of A and B ~- G, then there exists D ~- G such that 

A -- B × D (cf. [11, Ex. 20.2.5, p. 145]). 

LEMMA 2.9. Let N <~ G be such that G I N  = Cp, with p a prime number, and 

set g ~ G - N. Then 
(i) r(G) = ps + ( ( r ( N ) -  s)/p), where s is the number of conjugate classes of N 

fixed by the conjugation automorphism ag of N induced by g. 

(ii) r~ ( G - N)  = s . (12 - 1). Furthermore, if N is abelian, then s = ] C~(g)  N S ]. 

(iii) Let Ri be the set of conjugate classes of N of cardinality m,, i -- 1 , . . . ,  e, 

where {ml , . . . ,  me} is the set of different cardinals of the conjugate classes of N, 

and set s, the number of classes of Ri fixed by a~. Then r (N)=E~I]Ri] ,  

[ R , [ =  s,(mod p) and s = E~=ls~. 
(iv) Let Si be the set of conjugate classes of N of elements of orders m~, 

j = 1,... ,  e', where {m I, . . . ,  m ~} is the set of different orders of the elements of N, 

and set s~ the number of classes of Sj fixed by ag. Then r (N)=  ET'=I[Si [, 

I --- s;(mod p) and s = ET'_lS ~. 
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(v) The subgroup (g) acts by conjugation over the set I r r (N)  of all the complex 
irreducible characters of N and Further, if 

{m'~' . . . . .  m",,} is the set of different degrees of the characters of Irr(N),  Xt = 
{X E I r r (N) lx(1  ) = m';} and s'~ is the number of the cl~aracters of Xt fixed by g, 
then r(N) = Z~"=~IX, l, Ix*l -= s'~ (mod p) and s = ~,7", s'~. 

PROOF. (i) It follows from [2] p. 472. 

(ii) We have r(G) = ps + ( r (N) -  s)/p and re(N) = s + ( r ( N ) -  s)/p hence 

re(G - N) = s. (p - 1). Moreover, if N is abelian, clearly, s = ICe(g) n NI. 
(iii) Since IC1N (n)gl = iC1N (n)l and o(n g) = o(n) for each conjugate class 

C1N (n) of N, clearly, (iii) and (iv) follow. On the other hand, by considering the 

action of (g) on Irr(N),  Brauer's Lemma on character table (cf. [10 Satz 13.5]) 

yields s = I{X ~ I r r ( N ) [ x  g = X}]. 

(v) It holds because Xg(1) = X(1) for each X E Irr(N).  

REMARK. Suppose that the tuples ({C1N (n,)l . . . .  ,{CIN (n,)]), (o(m) . . . . .  o(n,)) 

and (X,(1) . . . . .  Xt(1)) with t = r(N) are known. Then the Lemma 2.9 may be used 
to set bounds to the possible values of r(G) and also to determine Ae. 

LEMMA 2.10. Let N be an abelian normal subgroup of G and let K be a 

subgroup of G such that G = NK. Suppose that there is an h E K satisfying 

Cp,(h) = CK(h), where CK(h) is the image of C,:(h) in G = G/N. 

Then the following propositions hold. 

(1) xf [h, N] = {[h, n ] l n ~ N}, then [ h, N] is a normal subgroup orB = NCr ( h ) 
and r~(hN)= r~(9),  where 1V = N/[h,N] and E = B/[h,N]. 

(2) If  {rhl = 1, th,, . . . ,  ths} is a complete system of representatives from distinct 
conjugacy classes of E that make up the normal subgroup IV, ordered so that 

ICo(th,)[>=lCo(rh,+l)l, i = 1  . . . . .  s - l ,  whereD=(CK(h)[h,N])/[h,N], 

then, 
(a) ]CN(h )I = 1 + E7 2 I D : Co(th,)[, 

(b) Ah = (I CN(h )I" (I CK(h )l/lD : Co(ths)l),..., 

} CN(h)J. (I C,,(h)}/}D : Co (a~2)}), I CN(h)I" I C,,(h)l) 
and Clo (hml) . . . . .  C1G (hm,) is the set of all conjugacy classes of G that make up 
the normal set (hN) e. 

PROOF. Certainly, [h,N] is a normal subgroup of B = NC~c(h), hence/V is an 

abelian normal subgroup of E. Let {z~ = 1, z2 . . . . .  z,} be a right transversal of B 
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in G. We can suppose that each z~ is an element of K. Since CK(h) = 

C~:(h)N/N = C~(/~), we have 
t 

= U c~(~)~,, 
i = l  

i.e., {;f~ . . . . .  ;f,} is a r ight transversal of C~ (/~) in (~. For each m E N we have 

CIG (hm)= (hm) ° = U : = , ( h m )  ~',. 

Moreover (hm) B:' n (hm)%# 0 implies that there are elements b,b'@ B such 
that ( h m f  z, b,z /~, -~ = (hm) i, hence = h ,, and necessarily i = ]. Thus 

t 

Cl6(hm)- -  U (hm) Bz' and IClc(hm)l=[Cl~(h)l.l(hm)B]. 
i = 1  

On the other hand, we have 

(hm) B = (hm)NCdk)= (h[h,N]m)C~th)= h[h ,S]m cdh), 

so I(hm)~l=l[h,S]mCK~h~ I, but the set [h,S]m c#h) is a disjoint union of 

I D : CD(th)I (with rh = m[h,S])  right cosets of [h ,S ]  in N, hence 

(6) I(hm)" I = I[h,S]l" ID:  Co (th)l. 

Therefore I Clc, (hm)l = I CI~ (/~)1" I lh, NIl. I D" Co(,h)l and 

I C~(hm)l = (I N/[h,N] I)" (I C,,(h)l/I D: Co (aO I) 

(7) = I CN(h) l  (I C,,(h)l/I D: Co (rh) I). 

Furthermore, if m and m' are two elements of N, we note that (hm) ~ = (hm') ~ 
if and only if [h,N]m is conjugate to [h,N]rn' in E, because 

(hm) B = h[h,N]m C,~ "~, (hrn') B = h[h,N]m'C,, ~h~ 

and /V is an abelian subgroup of E. 

Let CI~ (hm~) . . . . .  C1G (hm,) be the totality of conjugacy classes of G that 

mako up (hN) ~, ordered so that I C~(hm,)l>=lC~(hm,+,)l for all j =  
1 , 2 , . . . , s - 1 .  We have C1G(hmj)(l hN=(hmj )  8 (because (hmj) Bz̀  n h N ~ O  

implies /Y~, =/~, hence :?~ = 1) and 
s s 

hN = U (C1G (hmi)N hN)= U (hm,) B. 
j = l  j= l  

Counting the number of elements of H in both sides of the above equality, we 

get (2)(a) from the relation (7). Also, (6) yields the proposition (2)(b). 
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Finally, we have Cl~(hmj)=CIG(hmj , )  if and only if (hmj) B = 

Clc, (hmj) A hN = CI~ (hmc) N hN = (hmj,) B, i.e. iff rhj is conjugate to th c in E. 

Therefore {n~, th~ . . . . .  rh,} is a complete system of representatives from distinct 

conjugacy classes of E that make up the normal subgroup N. 

As can be seen from the tables, most of the groups appearing in them are 

semidirect products N x~ K, with N abelian. Assuming N, H and the action ,~ to 
be known, in the next lemma we determine Ac from A, and the action A. 

LEMMA 2.11. Suppose thatG = N x ~ K ,  with Nabelian. Let {hi = 1,h2,. . . ,h,} 

be a complete system of representatives from distinct conjugacy classes of K. Set 
19, = CK(h,)[h,,U]/[h,.N], 1V~ = N/[h, ,N] and E~ = NCK(h,)/[h,,N] for all i = 
1 . . . . .  t. Then E, = ~ x , l ) , ,  D, is isomorphic to CK(h,). and the following 
propositions hold : 

(1) r (G)= re(N)+ re~(N2)+ "" + re,(/(/,). 

(2) I f  {rh, = l,...,rh,s,} is a complete system of representatives from distinct 

conjugacy classes of E~ that make up the normal subgroup ~ ordered so that 

] Co, (rh,k)] _--> f Co, (rh,k+,)] f o r  a l l  i = 2 , . . . ,  t a n d  k = 1 . . . . .  s,, then we have 

(a) I CN(h,)t = 1 + ~=21J0, : Co, (th,k ) l, 
(b) Ah, = (] CN(h,)]" (I CK(h')]/ll)' : C6,(th'~,)l) . . . .  , 

I C~(h,)l. (I CK(h,)IIID,: C,~, (m,s,)l), I C~(h,)l" I C,,(h,)l), 
and {CI~ (hmq)] 2 <= i < t, 1 <_- j <= s,} is the set of all conjugacy classes of G that 
make up the normal set G - N .  

(3) E~=IV~×D, if and only if r~(h,N)=[C~(h~)[. In this case we have 
Ah, = (] CN(h,)] ] CK(h,)I,...,] C~(h,)I ] CK(h,)]), and in particular, if [ C~(h,)[ = 2, 
then r o ( h , N ) = 2  and A,, = (2}C,,(h,)l,2[C,,(h,)}). 

(4) The group 19, acts transitively on N* =/Q~ - {1}, by conjugation, iff r~ (h,N) = 
2. In this case we have 

Ah, = (I CN(h')l" (I C~(h,)ll(I Cu(h, )}-  1)), } CN(h,)l ] Cr(h,)] ). 

(5) rG(h,N)= 1 iff hi acts by conjugation on N* as a fixed-point-flee auto- 
morphism. 

PROOF. The propositions (1) and (2) are an immediate consequence of 

Lemmas 2.1 and 2.10, because CK(h,)N/N = Cg(/~) for all i =  2, . . . , t .  

On the other hand, (3), (4) and (5) are very interesting cases that follow 

directly from (2). 

EXAMPLE. We consider the unique non-split extension of C 4 by A6, 

C2xxA6 - ((xl) x (x2) x (x3) x (x4))xx (a,b ]a 5 b 5 = (ab) 2 = ( a - lb )  4 = 1), 
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x a =  a a b X b __ with relations x~=x4 ,  2 xlx4, X 3 = X 2 X 4 ,  X 4 = X 3 X 4 ,  X l = X l X 2 ,  2 - - X 2 X 3 ,  

b x3 - x2x4, x~ = xlx3x4. In this group, a (respect. b) corresponds to the permuta- 

tion (15432) (respect. (13456)). 

We have Am 6 = (360,9,9,8,5,5,4) = (I CAo(h01 . . . . .  I CAo(hT)l) and if the tuple 

(hi, h~ . . . . .  h7) corresponds to the tuple 

(1, (123), (123) (456), (12) (34), (12345), (12354), (1234)), 

then one sees that h3,h5 and h6 act f.p.f, on N*,  hence r~(h~N) = 1 for i = 3,5,6 
and Ah~ = (9), Ah~ = (5), A~ = (5). Furthermore, with the notation from the above 

lemma, we have: 
(1) ]V2 = C ~ , / ) 2 -  C3 and E2 ~- C~x~C~ = (73 x An, hence / )2  acts transitively 

on N* ,  so r c (h2N)=2  and Ah~= (4"9/3,4"9)= (12,36); 

(2) /Q6=C 2 2, /)6~'~" D8 and E6 = C~XxD8 = (w, ,wz)(c,  d l c a = d  z = cc d = 1) 
c c d d with relations w ~ -  wz, w2 = wlw2, w~ = w~, w2 = wz, hence rG(hTN)=3 and 

A~ = (4 .8 /2 ,4 .8 /1 ,4 .8 )=  (16,32,32), because the conjugacy classes of/V7 have 

cardinality 1,1 and 2 respectively. Thus r ( G ) =  12 and 

Ac = (5760, 384, 36, 32, 32,16,12,9, 8, 8, 5,5). 

LEMMA 2.12. Let G be a simple group satisfying I{o(g)lg E G}I = 4  or 5. 

Then G is isomorphic to one of the following groups: As ,  PSL(2,7), PSL(2,9), 

SL(2,8). 

PROOF. Let P be a 2-Sylow subgroup of G and p, q two odd primes dividing 

the order of G. Set o(g) = 2. If expP  = 2, then I CG(g)I is divisible by at most two 
prime numbers, hence C~ (g) is a solvable group, so G is isomorphic to PSL (2, s) 

with either s > 3 and s ~ 3,5 (mod 8) or s = 2" (el. [7] p. 484), and necessarily 
either G = PSL(2,5) or G-~ SL(2,8), because SL(2,s)  has elements of orders 

s - 1  and s + l .  On the other hand, if e x p P ~ 2 ,  then { o ( g ) l g E G } =  

{1,2,4,p,q}, hence G is a C-group. Thus, either G = PSL(2,7) or G - PSL(2,9) 

(cf. 110] p. 465). 

LEMMA 2.13. Let ck be an automorphism of G and p an odd prime. We have : 

(i) I f  o(qb) = p and I C~(~b)l = 1, then G is a nilpotent group. 

(ii) I f  o(ck) = p and ]CG(~b)I -- 2, then G is a solvable group. 

(iii) If  o(~b) = 4 and ]Cc(~b)l = 1, then G is a solvable group. 

PROOF. (i) cf. [7] p. 337. 

(ii) Cf. [5]. 
(iii) Cf. [7] p. 341. 
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LEMMA 2.14. Let G be a Frobenius group with kernel K and complement D. 

Then : 

(i) I O l  is a divisor of [K I -  1. 
(ii) r (G)  = r ( D ) +  ( r ( K ) -  1)/ID ]. 
(iii) K is a nilpotent group. 

(iv) I f  2 is a divisor of I D[ then K is an abelian group. 

(v) The Sylow 2-subgroups of G are either cyclic groups or quaternion groups. 

PROOF. cf. [7] p. 339. 

LEMMA 2.15. Let G be a group with S ( G )  abelian. Suppose that there exists 

I2I <= G = G / S ( G )  such that 171 = Cp x Cp, p a prime, and 171 - {1} is a set of 

conjugate elements of G. Then ffI does not act f.p.f, on Oq(S(G))  for each prime 

number q ~ p and 

I C ~ ( h , ) A S ( G ) I = I C ~ ( h 2 ) A S ( G ) I  [ o r a n y h ~ , h 2 E H - S ( G ) .  

Further, i[ p = 2 and I C~(h) n O, ( S ( G ) ) I = q ', q an odd prime, then I Oq(S(G)) l  

is a divisor of q3,. 

PROOF. Let q / p  be a prime divisor of I S(G)I.  (2.14) yields t h a t / 4  does not 

act f.p.f, on Oq{S(G)).  Moreover,  if h l , h 2 E H - { 1 } ,  then C o ( h ~ ) N S ( G )  is 

conjugate to CG(h2)O S (G) ,  hence ICG(hl)N S(G)I  = ICc(h2)n  S(G)I .  Fi- 

nally, if /~ =(/7,)x(/~2)--- C~ and L, = C~(h~)n Oq(S(G)) ,  then L, <-E = 

Oq(S(G))(h~,h:) ,  hence (2.8) implies that there exists D < _ E  such that 
Oq(S(G))  = LIL2 x D; so, d h' = d ~ = d h2 for each d E D. Consequently D is a 

subgroup of Ca(h~h2)n Oq(S(G))  and lOq(S(G))  I is a divisor of q3,. 

LEMMA 2.16. Let G be a group with S ( G )  abelian. Set G = G / S ( G ) ,  b an 

element of order 2 of G, and M ~- G such that M <= S ( G ). I f  C~ ( b ) N M = 1, then 

z y = z for any z ~ M and y E G such that by is a conjugate element to b in G. 

PROOF. If b y = / ~  for some g E G, then CG(by)n  M = (CG(b)N M)  ~ = 1, 
hence z ~ = z -1 = z by for each z E M .  Therefore z '  = z. 

Let F be the class of the nilpotent finite groups. The families 

• j = q ~ / n  F, l_-<j =< 15 

are classified in [22]. We have: 

THEOREM 2.17. (i) ~2"1 = {EtA It E N}. 
(i i)  xIt2 = {C3} .  
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(iii) q~3 = {C4}. 
(iv) q'4={Cs,C~,Ds,Q~}.  

(v) '/'5 = {C~ x C4, C3 x C3}. 

(vi) q~={C~,O,~,D,6,SD,~}.  

(vii) ~7 = {C~, C2 x Ds, C2 x Os, C4 x~ C4, (C4 x C2) XA 1 C2}, where C4 x~ C4 : 

(a) x~ (b) with A given by a b = a -~ and (C4 x C2)xA, C~ = ( (a )×  (b))x , , (c)  with 

A, given by a c = ab, b ~ = b. 

(viii) q', = {C,, C6 x C2, C10}. 
(ix) ~ = { C ~ x  C2× C2,C~x~Cz,(C4× C2)×~2C_~}, where C~×~C2:  

(a)X~ (b) with A given by a b = a s and (C4x C2)xA, C~_ with A2 given by a C = a, 

b" = a2b. 

(x) xIt,o = {C,, ,  C,2, O, ,  02 ,  D 3 z ,  Q32,5D32} U 25F~ U 2SF~. 

Now, the finite groups G satisfying the conditions a ( G ) =  1,2 or 3 are 
described in the next three lemmas (cf. [23]). 

LEMMA 2.18. G is a finite group satisfying a ( G ) =  1 if and only if G = 

H xtC2. This group satisfies r (G)  = 2 + ((I HI - 1)/2). 

LEMMA 2.19. G is a finite group satisfying a ( G ) =  2 if and only if G is 

isomorphic to one of the following groups: (i) Y xrC~, (ii) C2 x (H ×rC2), (iii) 
H ×~ C~ = H x ,  (b) with relations h b = h ~ for each h E H, (iv) C~. Furthermore 

r (G)  = 3 + IHI for all the groups which appear in (ii) or (iii). 

LEMMA 2.20. G is a finite group satisfying a (G)  = 3 if and only if G is one of 

the following groups: 

(i) C3 x (H xrC_~ ), 
(ii) H xrC4, 
(iii) ( A s × H ) x , C 2 = ( A ~ × H ) x ~ ( b ) ,  where A is given by A~(b)=Z~ and 

h ~ = h- '  for each h E H .  This group satisfies r = 6 + ( 5 1 H [ - 3 ) / 2 .  
(iv) (A~ × H) .  C4 = (A~ x H ) .  (b ) with A6(b ) = PGL* (2,9) = M9 and h b = h -~ 

]:or every h E H. This group satisfies r = 6 + (7[ H I - 3)/2. 

(v) M~,'2s,~4,Ds or Q~. 

REMARKS. (1) If N is a normal subgroup of G, then t r ( G / N )  <- a (G ) .  It is an 

immediate consequence of the fact that S(G)N/N<= S ( G / N ) .  

(2) a (PGL(2 ,q) )  = (q + t)/2, if q is an odd number greater than 3. 

3. Groups with S(G) non-solvable and a (G)=<9  

LEMMA 3.1. Let G E q~, be such that S ( G )  is non-solvable. 

3/3(G) + a(G) .  

T h e n  t = > 
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PROOF. Set {L1,...,L~e'~} the set of minimal normal subgroups of G. As 

S(G) is non-solvable, we can suppose that L~ is non-solvable. 

Clearly we have (L1 x Li) N (L1 x Lj) = L1 for every i ¢  j _>- 2 and re (L,) ~ 3, 
because I LII is divisible by at least three prime numbers. Set T =  
Lx U . . .  U Lore), then (L~ x L~)N T = L~ U Li, hence L~ x L~-(L~ U L~) is a 

subset of S(G) - T. Thus re (S(G) - T) >= 3(/3 (G) - 1). Moreover 

re (G - S (G)) = a (G) and r~ (T) => 1 + (/3 (G)  - 1) + 3, hence 

r(a)>= a(G)+ ( /3(G)-  1 ) 3 + / 3 ( 6 ) + 3  = 4 / 3 ( 6 ) +  a ( G ) .  

THEOREM 3.2. Let G be a finite group such that S(G) is non-solvable and 

/3(G) = r ( G ) - j  with 1 N j  <= 10. Then G is isomorphic to one of the following 
groups: As,A6,AT,'~5,'Z6,Asx C2, PSL(2,7), PGL(2,7),  PSL(2 ,7)x  C2, 
PGL(2,9),  PAL*(2,9), SL(2,8), PFL(2,8), PSL(2,11), PSL(2,13), PSL(2,17), 

PSL(3,4), M,~, Sz(8), (As x C3)xa C, with A5C2 = "25 and C3C2 ~- Y,3. 

PROOF. If S(G) = G, G is completely reducible, hence G = 

G, x ... x G~ x Z ( G )  with the G~ . . . . .  G, non-abelian simple groups. Then 

r(a)=r(a,)...r(as).lz(a)l>-_5".Iz(a)l and ~(G)<- s + I Z ( G ) I - 1 .  

So 5".[Z(G)I- (s+IZ(G)I-1)<-<_r(G)- /3(G)=a<=IO forces s = l  and 

[Z(G)[  _-< 2. Consequently, either G = As x C2, or G = PSL(2,7) x C2, or G is a 
simple group with r(G)<= 11, hence from [1], G is isomorphic to one of the 
following groups: As, PSL(2,7), A6, PSL(2,11), A7, PSL(2,13), SL(2,8), 

PSL(3,4), M , ,  Sz(8), PSL(2,17). 
Thus we can suppose S(G) < G, i.e. a ( G )  _-> 1. Further, (2.18) and (2.19) imply 

a(G) -> 3. If a(G)  = 3, then G is isomorphic to one of the following groups: M~, 

Es, or  (A5×C0×~C2, by (2.20). Now, we suppose a(G)_->4, (3.1) yields 

3 /3 (G)+c~(G)N10 ,  hence /3(G)_-<2 and necessarily / 3 ( G ) = l .  If S ( G ) =  
A x A with A a non-abelian simple group, then a ( G ) = 4 ,  r ( G ) N 1 2  and 
r ( a / s ( a ) )  N 5. 

If r ( a / s ( a ) ) = 5 =  a ( a ) + l ,  then (2.3) yields ICe(x)l=lCd(2)l  for each 

x E G -  S(G) and (2.13) (or (2.3)(ii)) implies that S(G) is solvable (this is 

deduced from an inspection of the tuples Ae for r((~) = 5), which is impossible. 
Thus r(G/S(G)) N 4. 

If G / S ( G ) =  Cp, with p prime, then r(G) = ps + ( r (A)  ~ -  s)[p >= 13, impossi- 

ble. So, we can suppose that G/S(G)  is isomorphic to one of the following 

groups: ~3, C4, C~ x C2, A4, Dio. 

If G/S(G)=Y~3, (2.1) implies 4 =  re(aS(G))+ re(bS(G)) with o ( t i ) =  3 and 
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o(/~) = 2. On the other hand, (2.13) implies re(aS(G)) => 3 and r~(bS(G))>= 2; 

this is impossible. 
If G/S(G)= C4, (2.1) implies 4 = rc(bS(G))+rG(b-~S(G))+ r~(b2S(G)) 

with o( /~)=4,  hence necessarily r~(bS(G))= 1, Cc(b)=(b) and S(G) is 

solvable by (2.13)(iii), impossible. 
If G/S(G)= C2 x C2, then (2.1)(i) implies that there exists b ~ G -  S(G) 

such that r~(bS(G))= 1, hence I C~(b)l--4. Let P be a Sylow 2-subgroup of G 
and g E G such that P/(g) = C2, then g'- E S(G) and S(G) have cyclic Sylow 

2-subgroups, impossible. 
If G/S(G)~-A4, we have 4 =  re(aS(G))+rc(bS(G))+r~(b aS(G)) with 

o(ti) = 2 and o(/~) = 3, hence necessarily rc(bS(G)) = 1 and S(G) is solvable by 

(2.13)(i). Similarly the case G/S(G)~-D1o cannot arise here. Thus we can 

suppose /3 (G)  = 1, r(G) < 11, S(G) is a non-abelian simple group and S(G)<= 
G = Aut(S(G)) .  Also, arguing as above, we can suppose a(G)>= 5 (the case 

G/S(G) --- C3 is left out by (2.13), if a(G) = 4) or a(G) = 4 and G/S(G) = (22. 
If a(G) >- 6, then r~(S(G))<= 5, hence I{o(g)l g s(G)}I = 4 or 5 and from 

(2.12) we obtain that S(G) is isomorphic to one of the following groups: As, 
PSL(2,7), A6, SL(2,8), hence necessarily G is isomorphic to Aut (SL(2 ,8 ) )=  

PFL (2, 8) (a (PFL (2, 8)) = 6). 
Now we suppose that a ( G )  = 5. Then r(G/S(G))<=6. 
If r(G/S(G)) = 6 = a ( G ) +  1, then I C~(x)l = I Cc(X)l for each x E G -  S(G) 

and looking at the possible values of the components of the 6-tuples Ac, we 
deduce from (2.13) (or (2.3)(ii)) that S(G) is solvable, which is impossible. 

If r(G/S(G)) = 4 or 5, then there exists x E G - S(G) such that ra(xS(G)) = 
1, by (2.1)( 0, so I Cc,(X)l = I co( )l and 

I C (x)l ~ {2,3,4,5,7,8}. 

If ]C~(x)l is a prime number, then (2.13) implies that S(G) is solvable, 

impossible. 
If [Co (x)] = 4, (2.13)(iii) implies o(£)  = 2, and one observation of the tuples 

Ac implies that (~ has Sylow 2-subgroups isomorphic to (72 x C2. Let P be a 

Sylow 2-subgroup of G and g E P such that P/(g) = C2, then g2 E S (G) and 

S(G) is solvable, impossible. 
If ] C~(x)] = 8, then G/S(G) is isomorphic to Ds, 08, or ~4, and there exists 

E G with r~(yS(G)) = 1 which does not conjugate with 2, hence [ Cc(y)l  = 4 

or 3 and, reasoning as before, S(G) is solvable, impossible. 

Suppose G/S(G)=(b)=C3, then 5=r~(bS(G))+r~(b~S(G)), but 

r~(bS(G))>=3 and r~(b-lS(G))>=3, by (2.13), impossible. 
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Suppose G/S(G)=£3 ,  then 5 = ro(aS(G))+r~(bS(G))with o( t i )=3  and 
o(6)=2 .  (2.13) yields rG(aS(G))>=3, hence ro(bS(G))=2, [Co(b) l=4  and 
S(G) has cyclic Sylow 2-subgroups, this is impossible. 

Finally, we consider only the case G/S(G)~- C2 and 4 _  <- u(G)_- < 5. We have 

ro(S(G))=< 7, hence r(S(G))<=2.5+2 = 12, because Co(a)n  S ( G ) ~  1, hence 
[11 implies that S(G) is isomorphic to one of the following groups: As, PSL(2,7), 
a6,  PSL(2,11), AT, PSL(2,8), PSL(2,13), PSL(3,4), Mu, Sz(8), PSL(2,17), M=, 
PSL(3,3), or PSL(2,19). By considering the structure of their automorphism 
groups we obtain the following groups: PGL(2,7) (a(PGL(2,7))=4), £6 

(a(E6) = 5), or PGL(2,9)(a(PGL(2,9))= 5). 

4. Non-nilpotent groups with S (G) solvable. The families qbj 

LEMMA 4.1. Let G be a non-nilpotent group with S(G) solvable and satisfying 
a ( G ) = 4 .  Then G is isomorphic to one of the following groups: (i) (C2x C2)x 
(HxtC2), (ii) HxrO~, (iii) C2x(YxrC3),  (iv) Y×rCs, (v) C, xiC,_, (vi) C2× 
(Hx~C4)= C e x ( H x ,  (b)) with relations h b = h -1 for each h E H ;  this group 
satisfies r = 6 + 21H [, (vii) (C3 x H) x,  C4 = ((x) × H) x~ (b) with relations x b = 
x-' ,  H(b) = H x~(b}; this group satisfies r(G) = 6+ 3(IH I - 1)/4. 

PROOF. cf. [231. 

LEMMA 4.2. Let G be a non-nilpotent group with S(G) abelian and satisfying 
the conditions 5_-< a(G)_-<9 and r(G/S(G))<=6. Then G is isomorphic to one 
group of Table 5. 

REMARK. In Table 5, a ,  = I H I - 1 .  

PROOF. Since r(G/S(G))<= 6, G/S(G)  is isomorphic to one of the groups in 
Table 1 with at most 6 conjugate classes. 

(1) Suppose G / S ( G ) =  (5)= C2. Then or(G) = rc (bS(G))= ICe(b)N S(G)I. 
Set L = Co(b) A S(G), L is a normal subgroup of G and (2.7) implies that there 
exists D -~ G such that S(G) = L x D and Co(b) = 1. Now, fixing the values of 
t~(G), we obtain the desired groups. 

(2) Suppose G/S (G)=  (d)xr( /~)= Cp x tC  q, where p and q are prime num- 
bers such that q divides p -  1, then 

(8) a ( G ) = ( ( p - 1 ) / q ) . ] C ~ ( a ) f q S ( G ) l + ( q - 1 ) l C c ( b ) f ) S ( G ) l .  

Set L = Co(a)N S(G)<_ G and D -< G such that S(G)= L × D, then (a) acts 
f.p.f, on D. Now, one simple study of the solutions from (8) for 5_-< a(G)<= 9 
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TABLE 5 

G / S ( G )  a ( G )  O r (G)  

5 
6 
6 

C2 7 
8 
8 
9 

6 
C3 6 

8 

5 

5 

5 

6 

6 

6 
E3 7 

7 

7 

8 
8 

8 
8 

8 

8 

~3 9 
9 

9 

9 

(H x:  (?2) X Cs 
(I-I xfC2) x C. 
C~x(Hx,  C4)=C3x(Hx,(b)) ,  h ~ = h  ' Vh ~ H  
C ~ x ( H x ,  C~) 
( G  x G x C~) x (H  x~G ) 
C~x (Hx,C~)  = C~ x ( H x ,  (b)), h ~ = h- '  Vh e H  
C] x (H  x:C2) 

C3 x (Y x:C3) 
Y x ~ C o  = Y x ,  (b) with y~3= y Cr(b) = 1 
(C~x C~)x (Yx :C , )  

10 + (5" an" 2 -1) 
12 + (3' an) 
1 2 + ( 3 - a , )  
1 4 + ( 7 . a , . 2  1) 
16+(4 . a~)  
16 + (4. a~) 
1 8 + ( 9 . a , - 2  1) 

s+lYI 
8+IYI 
12 + ( 4 . a v - 3  1) 

(C~ × C2) x ,  (C~ x: G )  = ((x)  / ( y ) ) / ,  ((a) x:  (b)) 9 
x" =y ,  y a = x y ,  x b = x ,  y b = x y  
(Ca × C2 × C2)×~ X~ = ((z) × (x) × (y)) ×~ (a, b) 9 
z ° = z ,  z ~ : z  -~ ,x  ~ = y , y ~ = x y , x  b = x ,  y b = x y  
C~/. ~s = ((x,) x (y,) x (x2) x (Y2)) x~ (a, b) I0 
x':= y~, yi= x~y. x~= x. y~= x~y. i=1,2 
( C , x  COx., X,=((x>x(y>)x~ (a,b> 13 
X a ~. y, y a  = x - - l y  1, X b : X,  yb = x ly 1 

(C2 x C~)x,DC, = ((x) x (y>)x,  (a, b) 10 
x a =y,  ya =xy ,  x ~ =x,  y~ = x y  
C~ x X, 10 
C] x,  (C,~ xrC2 ) = ((x) x (y)) x,  (a, b) 13 
x ~ =y,  y~ =xy, x b =x ,  yb =xy  
C ~ x ~ ( C o x t C 2 ) = ( ( x ~ ) x ( y ~ ) x ( x 2 ) x ( y 2 ) ) x , ( a , b )  18 
x':=y~, y~= x~y~ = y  b, x ~ = x l ,  i = 1 , 2  
C~x~ ( (C3x  C 3 ) x t C 2 ) = ( I ] ( x i ) x ( y i ) ) x ,  ( a l , a2 ,b )  18 

°,_ _ ~ "1_ = y ~ , x ~ = x , = x ~  ~ , i = 1 , 2  x, - y, - y~ , y,  - x,y, 
C~x. C4= (a)x~ (b), a b = a -I 12 
C~x~Y.~=((x~)x(yl)x(x~)x(y~))x,(a,b) x ' : = x ,  =x~  14 
x~= y~, y~= y , ,  y~= x~y~ = y~, x~ = x~, Yt  = x ,y l ,  x~ = x~ 
c~ x (c~ x:c~) 12 
(Csx Cs)x,, ({C3x C,)xtC2)=((x,y))x~ (a,,a2.b) 24 
x ~ ' = x = x  b, y ~ = y = x  "~, y ~ = x  t y - ~ = y b  

(C5 × Cs) x~ (C9 ×/C2) = (x, y) x~ (a, b) 24 
x ° = y, y~ = x-~y -1 = y~, x ~ = x 
(C~ x CT)x~ E3 = (x,y) x~ (a,b)  20 
x o =y,  y~ = x - l y - , = y b ,  x b = x  

C3 x ~4 15 
C~ x, E3 = ([I (x,) x (y, >) x ,  (a, b > 24 
x l  = y ,  Yt  = x~y~, x~ = x,, y~ = x~y~, i = 1,2,3 
C~ x A (Cis xtC~) = (II (x~) x (y~))x~ (a, b) 26 
x~ = y~, y~ = x,y~, x~ = x~, y~ = x~y. i = 1,2 
(C~ x C~)x, ( C I  xtC~) = (x, y) x,, <a, b> 17 
x ° = y ,  y " = x y , x  b = x , y  ~=xy  

5 E3 × ~3 9 
5 C~2×~C~=(a)× , (b )  a ~ = a  -' 9 
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T A B L E  5 ( c o n t d . )  

GIS(G) a(G)  G r(G) 

c~ 

c~ 

C~×AD.=(x)×~(a,b) x " = x  ' = x  b, a e = a  ~ 9 
C,×~Os=(x)×~(a,b)  x ° = x  ' = x  b 9 
E~ x D.,  12 
C~x~C] = (x ,y ,z )x~  (a.b) 15 
X a = X ,  y a  = y l z a  = Z 1, x b  = X I ,  y b  = y ,  Z b = Z I 

E3 x D~, 15 
D~o x D~o 16 
C s x , D s = ( x ) x , ( a , b )  x ° =x  ' = x  b 13 
C s x ~ O s = ( x ) x , ( a , b )  x " = x  ' = x  b 13 
C2ox, C2=(a)x~(b)  a h = a  ' 13 
(C3xC. . )x~Ds=(x .y)x~(a .b)  x ~ =x  ~=x h, 15 
y .  = y ,  yb = y  ~, a b = a  ' 

(C3xC3)x ,D~=(x .y )x~(a ,b)  x ° = x  ' = x  h, 15 
y~ =y- , ,  y h = y  

(C, xC~)x~O~=(x , y )x . (a ,b )  x ° = x  ~,x b=x,  15 
y .  = y - ~ = y b  

( C ] x C ~ ) x , ( C ~ ) = ( x , y , z ) x , ( a , b )  x ° = x , x  b = x  ~, 21 
y . = y - , ,  yb = y ,  z o = z  ' = z  b , x * = y 3 = z ~ = l .  
C ] x . C ~ = ( x , y , z ) x . ( a , b )  x ° = x  ' , x  b=x,  18 
y~ = y - ~ = y b ,  z -  = z , = z  b 

D~o x Dt~ 20 
( C 3 x C ~ x C ~ ) x . ( C 2 x C 2 ) = ( x , y , z ) x , ( a , b )  x-~= y3 = 127 
Z 7 = l ,  Z a = Z 1 = z b ,  y a  = y - l ,  y b  = y ,  X a = X ,  X b = X I 

(C3×C~×Cs)×~(C2×C2)=(x,y ,z)×,(a,b)  x 3 = y S =  130 
z ~= 1, z ~ = z ~ = z b, y" = y - ~ .  yb = Y, x~ = x .  x b = x  

C~ x E:, 12 
Y-,3 x D2_~ 21 
D , o x  ((C3 x C3)xtC2) 24 
DI4 X D~4 25 
CTX~Ds=(x)x , (a ,b)  a b = a  ~, x ~ =x  ~=x b 17 
C2. x~ C , = (a )x , (b )  a b = a  -I 17 
CTx, O~=(x)x~(a,b)  x ° =x  l=xb, 17 
(C3 ×CS)×~,Ds=(x,y)×,,(a,b) x 3 = y 5 = 1 ,  21 
x~=x ,  y " = y  ' = f f ,  x ~ = x  -' 
(C~×Cs)×,~D~=(x,Y)×~2(a,b) x 3 = y ~ = l ,  21 
X a = X - l = x b ,  ya = y, yb = y - I  

(C~xCs)x~3D~=(x,y)x~3(a,b) x ~ = y ~ = l ,  21 
x ° = x  -~ ,x  ~ = x , y ° = y  ' = y S  

(C~×C~)×,O~=(x,y)×~(a,b) y ° = y  '=y~, 21 
X a = X - I ,  X b = X 

C~×,C~=(x,y,z~,z~)×,(a,b) x a = x , x  ~ = x  ~, 33 
y ° = y - ' ,  y ~ = y .  z T = z f l = z ~ , i = l , 2  
C3×~C~=(x,y,z)×~ (a,b) x ° = x, x ~ = x-' ,  44 
y .  = y - a ,  y ~  = y ,  z o = z-' = z ~ 

( C ~ x C ~ x C ~ ) x . ( C ~ x C ~ ) = ( x , y , z ) x . ( a , b )  x . = x ,  39 
X b = x - t ,  y a  = y I y b  = y ,  Z a = Z ~ = Z ~ 

C , x  D~ 15 
C3 x O~ 15 
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TABLE 5 (contd.) 

G / S ( G )  a ( S )  G r (G)  

5 
c, 

6 
6 
6 

7 

8 

8 

9 

9 

D,o 6 

A4 

G 

O8 

D 8  

( C ~ x C 3 x C 3 ) x ~ D s = ( x , y , z ) x ~ ( a , b )  x ° = x , x b = x  ~ 27 
y~ =y-~ yb =y ,  Z ~ = Z  ~=Z b 

( C ~ × C ~ × C 3 ) × ~ O s = ( x , y , z ) × ~ ( a , b )  x ~ =x, x b = x  ' 27 
y " = y - ~  y b = y , z ~ =  z . = z  b 

( C s x H ) x ,  C 4 = ( ( a ) x H ) x ~ , ( b )  a b = a  -',  
H ( b )  = H x t (b) 
Q x (H x:C) 
H x ~ C s = H x , ( b )  hb~=h V h E H ,  C~[b~)=l 
( C ~ x H ) x ~ C 4 = ( ( a ) x H ) x ~ ( b )  a b = a  -' 
H ( b )  = H x: (b) 
(C3x  C3x  H ) x ,  C 4 = ( ( x , y )  x H ) x ,  (b) 
x b = x - ' , y b = y - ~ , H ( b ) = H x : ( b )  
( C .  x H ) x ~ C 4 = ( ( a ) x H ) x ~ ( b )  a b = a  ', 
H ( b )  = H x :  (b) 
Q x ((C3 x H ) x ~  C ) =  C2 x (((a) x H ) x ~  (b )) 
a b = a -~, H ( b ) =  H x t ( b  ) 
( C ~ x Z ) x ~ C . = ( ( a ) x Z ) x ~ ( b )  a b = a  -' ,  

Cz(b~-)= l,  Z = I  or H, z ~ =  z V z  E Z 
( C , 3 × H ) x ~ C 4 = ( ( a ) x H ) x ~ ( b )  a ~ = a '  
H ( b ) =  H x t ( b  ) 
C x (H x:C3 

8 + ( 5 . a . - 4  ') 

8+(ao .2 ~) 
8+(an  .2 -1) 
1 0 + ( 7 . a . . 4  ') 

12+(9-aH.4 -1) 

14+(11-a . .4  ') 

12+(3 . a . . 2 - ' )  

12+(3.az .2  ~) 

16+(13 .a . -4  ') 

12 + ( 3 - a . . 4  t) 

C ~ x ~ D ~ o = ( x , y , z , w ) x ~ ( a , b )  a b = a  ' , x  ° = y ,  10 
y" = Z, Z ~ = w, W ~ = xyzw  = yb, Zb = w, w b = z, x b = X 

SL (2, 3) 7 
(C × C)× :C  s 
(G  × G ×  Os)×~ C3 = ( ( x , y )×(a ,b ) )×a  (c) 12 
x ~ = y , y ~ = x y ,  a ~ = b ,  b ~ = a b  
(C3 x C~ x C3) xx A, = ((x, y, z))x~ (a~, a2, b) 13 
X al = X = Z b, y al : y - I  Z a l  : Z I = z a 2 ,  y~: = y, 
xa2= x-~, x b = y, yb = z 

Hol(25Fzh, C3) 12 

Q x (YxrQ) 1 0 + ( 2 . a . . 5  1) 

( C 3 x H ) x ~ O ~ = ( < x > x H ) x ~ ( a , b )  x ° = x  , = x  ~ 
H(a,b) = Hx:(a,b) 
Q x (H x:Os) 
Hx~(C~x~C~)=Hx~((a)x~(b)) a b = a '  
H(a)= H xt(a), H(b)= H x:(b), H(ab)= H x:(ab) 

9+ (3 .a . .8 - ' )  

1 0 + ( a . . 4  1) 
10+(a . -4  l) 

( C 3 × C 3 ) × ~ D ~ = ( x , y ) × ~ ( a , b )  a b = a - ~ , x  . = y ,  
ya = x- t  x b = x,  y b  = y 

C 3 × ~ Q , 6 = ( x ) × ~ ( a , b )  x a = x  l=xb  ' a ~ = a  , 
C3×~D~6=(x)×~(a ,b )  x " = x  I=xb, a s = a  ' 
C3×~SD16=(x )×~(a ,b )  x ~ = x  ' = x  b, a b = a  i 

12 
12 
12 
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TABLE 5 (contd.) 

G / S ( G )  a ( G )  O r ( G )  

D~ 

D14 

Hol Cs 

C~x:C 

A5 

c. 

m 

8 

8 

6 

6 
6 
8 

8 

( C s x C s ) x ,  D s = ( x , y ) x A ( a , b )  a b = a  ', 14 
x ° =y,  y" = x  ~, x ~ =x,  y~ = y - t  
( C ~ x C ~ ) X ,  D l ~ = ( x , y ) x , ( a , b )  a ~ = a  ~ 15 
x° =y,  y " = x  ', xb =x,  y ~ = y  -' 
( C ~ x C ~ ) X ,  O l ~ = ( x , y ) x ~ ( a , b )  a ~ = a  l, 15 
x ° = y ,  y ° = x  ' , x  ~ = x ,  y ~ = y - '  
( C ~ x C ~ ) x ,  S D ~ = ( x , y ) x , ( a , b )  a ~ = a  ~ 15 
x~ =y,  y" = x  ~ , X b = X ,  y b = y  -~ 
( C ~ x C ~ x C ~ ) x ~ D , = ( x , y , z ) x ~ ( a , b )  a ~ = a  ~ 15 
x"  = x,  x b = x ',  y "  = z ,  z a = y - ' ,  y "  = y ,  z b = z ' 

C ~ x .  H o l C s = ( x , y , z , w ) × .  ( a , b )  ah  = a  ' 11 
x ~ = y = w °, y°  = z = y b ,  z a = w ,  w ~ = x y z w  = z b, x b = x 

C~s ×:C4 10 

Hol (C~, C~ x:C) 8 

GL(2,3) 8 
SL(2,3). C4 8 
(C4×C4)×,~3=(x,y)x,(a,b) a b = a  ', x ~ =y, 10 
y a  = X l y  I ,  X b = X l ,  yb = xy 

C ~ x , ~ 3 = ( x , y , z , w ) x , ( a , b )  a b = a  -J, x ° =y, x b=x ,  l0 
y" = xy = yb, z"  = w, z b = xz, w" = zw,  w b = x y z w  

SL(2,5) 9 
c n x , , A s = ( x , y , z , w ) x , ( a , b )  a S = b ~ = l , ( b a ) 2 = l ,  9 

x" =y,  y° = z, z ~ = w, w ° = xyzw,  x b = xy, yb = x, 
Z b = y Z W ,  W b = X Z  

C ~ x , 2 A ~ = ( x , y , z , w ) x , ( a , b )  x " = y , y ~ = z , z ~ = w ,  12 
w ~ = x y z w ,  x h = y z ,  yb = x ,  z b = x y ,  w b = z w  

H xtC6 
(C2x C2x H)x~ C6=((x, y) x H)x~ (a) 
x ~ =y,  y " = x y ,  H ( a ) = H x r ( a  ) 
( C 3 x H ) x , C ~ = ( ( x ) x H ) x , ( a )  x " = x  ~, 

H ( a )  = H x t ( a )  
( C 7 x H ) x , C ~ = ( ( x ) x H ) x , ( a )  x " = x  2 

H ( a ) =  H x t ( a  ) 
( C 3 x ( C 2 x C 2 ) ) x , C ~ = ( x , y , z ) x , ( a )  x ~ = y 2 = z 2 = l ,  12 
x ° = x  ' , y ' = z , z  ° = y z  
( C 3 x C 2 x C 2 x H ) x , C 6 = ( ( x , y , z ) x n ) x ~ ( a )  x 3 = l ,  
y 2 = z Z = l , x  " = x  ' , y " = z , z " = y z ,  H ( a ) = H x t ( a )  
( C ~ 3 x H ) x ~ C 6 = ( ( x ) x n ) x ~ ( a )  x a = x  ~, 

H ( a )  = H x t ( a )  
( C 3 x C T ) x ~ C 6 = ( x , y ) x ~ ( a )  x 3 = y T = l , x  ~ = x - '  
y~ =y2 

6 + ( a , . 6  7) 
8 + ( 2 . a , . 3  ~) 

9 + ( a ,  .2 ') 

1 0 + ( 7 . a , . 6 - ' )  

10+21H I 

14 + (13. a , - 6  -~) 

15 



330 A. VERA L(3PEZ AND J. VERA LOPEZ Isr. J. Math. 

TABLE 5 (contd.) 

G[S(G) a(G) G r(G) 

DC~ 

C~ x X~ 9 

C~ xtC~ 7 

Dis  

C~x:C, --  

C~ x: O~ 

9 
PSL(2,7) 9 

9 

(C~xC~xH)x,C~=((x,y)xH)x~(a) x~=y~=l ,  
x ° =x-t,  y"=y2,  H(a)=Hxt(a)  
(CsxH)x,  C6=((x)xH)x~(a) x °=x  -~ 
H(a) = Hxt(a)  

13 + (7/H/-3)2 x 

12+(5.a , -6  l) 

H x  tDC 3 6 + ( a , ' 1 2  -t) 
(C~xH)x~DC~=((x)xH)x~(a,b) a ~=a -t, 9 + ( 5 . a , . 1 2 ' )  
x" = x, x b = x ~, H(a,b)= Hxt(a,b) 
(C2xC2xH)xDC3=((x,y)×H)x^(a,b) 10+(a , .3  -~) 
a b = a  -t, x" =y, y° =xy, x ~ =x, yb =xy, H(a,b)=Hx:(a,b) 

C~ x~ (C z x 23) = ((x, y)) xx ((c) x, (a, b)) x" = x t, 
x b=x, yC=y a, x* =y, y " = x - t y - l = y  b 

14 

O l  X~, 1 C2 = (al ,a2,b)×^,(c) 
b__ b a2- ata2, a~ = a~ t, b c = b - t ,  a ~  = a t  = a t  

10 

SL(2,7) 11 
HoI(C~ x C2x C2) 11 
C 3. PSL(2,7) 11 

appl ied  to the cases in which G I S ( G )  is i somorphic  to E3, Dlo,  D,4 or  CTXtC3 

yields the listed groups  (arguing with L e m m a s  2.4 and 2.5). 

(3) Suppose  G / S ( G ) = ( b ) ~ C 4 .  We have  02(S (G) )<=Z(G) ,  a { G )  = 

2. [ C o ( b )  n S ( G ) [  + r~(b2S(G)) and L = C~(b 2) O S ( G )  ~- G. Set D "~ G such 

tha t  S ( G )  = L x D and set  L1 = CG(b ) tq S ( G )  ~- G. Then  L1 <- L, r~(b2S(G))  = 

(1LI ] + ]L 1)/2 and 

(9) a ( G )  = 21L1[ + ( I L l +  I L~[)/2. 

Now (9) yields the listed groups  for  5_-< a ( G )  <-_ 9. 

(4) Suppose  G/S(G) '=-  (72x (72. We have  0 2 ( S ( G ) ) < = Z ( G )  and 

Co(c )O  S ( G )  is a no rma l  subgroup  of G for  every  c E G - S (G) .  W e  assume 

two cases: 

(i) The re  is c E G - S ( G )  such that  r6(cS(G))  = 1. In  this case,  I c (c)l : 4, 
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hence necessarily a 2-Sylow subgroup P of G is isomorphic to Ca x C2, D8, or 

Qs, and G = [02,(S(G))]P. 
If P = (b~) x (b2)~- C2x Cz, we have S(G) = L x K with Cs~c)(bt)= 1, L = 

Cc(b2)AS(G)~_G and K ~-G. Therefore, r~(b2S(G))= I +([LI-1)/2, 
re (babaS (G)) = 1 + (I K I - 1)/2 and 

(10) ~ (G) = 2 + (I K I - 1)/2 + (I L t -  1)/2. 

If P=(a, bla4=l=b ~, ab=a- l )=Ds ,  we can suppose two cases: (1) 

iCa(b) l=4,  (2) ICo(a)}=4.  If ICa(b)l=4,  then O2.(S(G))=SIxS2 with 
S~= Cc(a)N 02,(S(G))~- G and S2 ~- G. Therefore, r~laS(G))=lS, I, 
ra(abS(G))= IS21 and 

(11) ~ ( G ) =  1 + Is, l+ls2l. 

If I co  (a)l = 4, then S (G) = E, x E2 with E, = Co (b) O Oz(S (G)) ~- G, and 

E 2 -  ~ O. So, r~(abS(G))= IE21, ro(bS(G))= IE, I and 

(12) a ( G )  = 1 + ]E,} + }Z21. 

If P = (a, b) = (28, then S(G) = E3 x E4 with E3 = Co(a) n O2,(S(G)), E4 <- G 
and 

(13) a ( G )  = 1 + IE3I + IE41. 

Now fixing a(G) in the equations (10), (11), (12) and (13), we obtain the groups 

corresponding to this case. 

(ii) We assume that ra(cS(G))>=2 for each c E G - S ( G ) .  Set G/S(G)= 
(/~) x (/~2) and t7 = (ra(btS(G)),r~(b2S(G)),r~(b~b2S(G))). By symmetry, we 
can suppose that {(2,2,2), (2,2,3), (2,2,4), (2,2,5), (2,3,3),(2,3,4), (3,3,3)} is the 

set of possible values of 17. From Lemma 2.2, equation (2), we have that 
ra(bS(G))=2 implies As = (8,8) or (6,12) and ra(bS(G))= 3 implies 

As E {(6, 24, 24), (8,16,16), (10,10,20), (12,12,12)}. 

Now using (2.7) and distinguishing the cases in which either 2 divides I S(G)I or 

IS(G)t is odd number, we obtain all the desired groups. 

(5) Suppose G/S(G)= A4. We have a(G)= ro(a,S(G))+21Ca(b)n S(G)[  

with o(&)  = 2 and o(/~) = 3. If S(G) is 2-group, then S(G) < Z(N), where N is 

the normal subgroup of G such that G/N = C3. Therefore, N/Z(N)  < C2 x C2. 
If N is abelian, then ro(a~S(G))= INI/4, c~(G)= [NI/4+21CG(b)N S(G)I and 

necessarily N=(C4xC4)xrC3. If N is non-abelian, we have N / Z ( N ) =  
C2xC2, N '=[N,N]=C2,  S ( G ) = N ' x K  with K~_G and r~(a~S(G))= 
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[NI/8. Therefore, either G -~ SL(2,3), or G = (C2 x C2 x Qs)x~ C3. On the other 

hand, if O~,(S(G)) is non-trivial, then since all elements of order 2 of G/S(G) 
are conjugates, we have (C2x C2) *=  Cl~(d 0 and necessarily r~(aiS(G))>=2. 
Now, (2.6) and (2.15) yield G = (C3 x C3 x C3)xxA4 with the relations given in 

Table 5. 

(6) Suppose G/S(G)=(b)~- C~. We have a(G)=4.1Ce(b)n S(G)[ and 

L = Ce(b)A S(G) <- G. So S ( G ) =  L x K with K-< G and C~(b)=  1. Conse- 

quently a(G) = 8 and  G -~ (72 × (Y×rCs). 
(7) Suppose G/S(G)= ~4 = [C2 x C2]~3 = [(&)x (&)](6,~) with d r=  d2, d~= 

a~az, d~ = &, d e - - 2 = & d 2 : T h e n  

a( G) = re(alS( G)) + re(cS( G)) + [ Ce(b ) n S(G)[ +ICe(ca2) n S(G)[, 

moreover ((dl) × (~i2))* C CIo (&). Now arguing as in the case t~ -~ A4, we obtain 

the desired groups. 
(8) If G/S ( G ) =  D8 or Q8, then O:(S(G))<= Z(G) and we have 

or(G) = r6(a2S(G)) + re(abS(G)) + re(bS(G)) + ICe (a) fq S(G)I 

if G/S(G)=(d,b[d 4= 1 =/~2, d ~ = d- ' )  = D8 and 

a(G) = [ Ce(a) n S(G)[ + [ Ce(b) n S(G)[ +[Ce(ab) n S(G)[ + r6(a2S(G)) 

if G/S(G)=(&b)=08 .  Thus, 02(S(G))<-_C2, S ( G ) = L × K  with L =  

Ce(a 2) 71 S(G) <- G and K-< G. Now we easily obtain the desired groups. 

(9) If G/S(G) ~- Hol C5, then 

a (G) = ICe(a) 71 S(G)] + 21C~(b) 71 S(G)I + rG(b2S(G)) 

with o(ti) = 5 and o(/~) = 4, S(G) = L × D with L = C~(a) 71 S(G) <~ G and 

D <~ G. Now, we obtain the desired groups fixing the possible values of a (G). 

(10) Suppose G/S(G)~ As. We have 

a(G) = 21Ce(c) 71 S(G)] + [ Ce(b) f) S(G)[ + re(a~S(G)) 

with o (Q  = 5, o(/~) = 3, A4 --- (all, d2)(/~) and ((a~) × (a2))* C_ f i e ( &) .  (2.15) and 

re(mS(G))<=6 imply Oz(S(G))=I. Set L = Ce(c)NS(G). If L ~ I ,  then 

necessarily L = C2 and (2.8) implies that there is a T_< S(G)(c) such that 

S(G)=L  x T. Consequently 5 divides [T [ - 1 .  If T = I ,  then G = S L ( 2 , 5 ) .  

Otherwise, we have I s(G)I = 2 ~+'~ for some integer k, hence b does not act f.p.f. 
over S(G), thus 2 divides t Ce(b)f3 S(G)],  re(a~S(G))<=3 and necessarily 

02(S(G)) < = C 4 2 from (2.5); this is impossible. So, we can suppose that C6(c)~- 
(?5. Consequently [S(G)I = 24~ for some integer k. By considering the conjuga- 
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tion action of NA,(Cs)~- D,o over S ( G )  we obtain that k = 1. Finally, as every 
non-trivial extension of C 4 by As splits (cf. [8] p. 79), it follows that either 

~ C2x~2As. G C~x~,A5 or G 4 

If r ( G / S ( G ) ) = 6 ,  then there is d E G - S ( G )  such that rG(dS(G))  = 1, 

because a(G)=<9.  Now the study of the associated equation (1) is less 

complicated, because the possible values of rc(xS(G)) ,  x E G - S ( G )  are 

smaller. Further, the proofs are analogous to those we have discussed above 

using the lemmas from section 2, and are therefore omitted. 

THEOREM 4.3. 

qb~ = {F,,,I t E N}, 

@2={C3}U{F,,2ItEN}, 
@3={C4,D,o}U{F,,3It~N}, 
@4 = {Cs, C6,Ds,  08 ,D,2 ,DC3,D,4 ,~ ,4 ,  C7x tC3 ,As}  U {F,,41t E N}, 

d~5 = {C2 x C4, C3 x C3, C9x:C2, C~ xtC4, C~ x tOs,PSL(2,7)} ,  

@6 = {C7, O,6, D~6, SD,6, C~3 xtC4, SL (2, 3), D22, D20, Cs x ,  C4,Hol C7, 
C13 xtC3, C2 x A4, C~, xrCs,Ss,PSL(2,9)} U {F,., It E N}. 

PROOF. It is an immediate consequence from (2.17), (2.18), (2.19), (2.20), 

(3.2), (4.1) and (4.2). 

COROLLARY 4.4. r (G) = 7 if and only if G is isomorphic to one of the groups 

with exactly seven conjugate classes listed in Table 1. 

6 

PROOF. r ( G ) =  7 implies /3(G)>= r ( G ) - 6 ,  hence G ~ U~=~@/ and (4.4) is 

deduced from a simple inspection of the groups with 7 conjugate classes that 
6 

appear in I..Jj=,@j. 

LEMMA 4.5. Let G be a non-nilpotent group with S (G)  abelian and satisfying 

5 N a ( G ) N  9 and r ( G / S ( G ) ) =  7. Then G is isomorphic to one of the following 

groups : 

(1) Y XtCT, 
(2) ( C 3 x C 3 ) x ,  SD~6=(x , y ) x~ (a ,b ) ,  a b = a  3, x ° = y ,  y° =xy,  x b =x ,  y b =  

xy ' (r = 9), 

(3) H X f O l 6  , 

(4) H x t S L ( 2 , 3  ), 

(5) (C3 x C3)x~ SL(2,3) = ( x , y ) x ,  (a,b,c),  a ~ = b, b ~ = a-~b -~, x ~ 
X t, Xb -1 b X ~ y,, = x  y, y =xy,  =x ,  = x - l y  ( r = 1 0 ) ,  

(6) ( C 3 x C 3 x H ) x ,  S L ( 2 , 3 ) = ( ( x , y ) x H ) x , ( a , b , c ) ,  a ~ = b ,  b ~ = a - ~ b  -~, 

x ~ Y, Y x-~, x b -~ yb x" y~ = 0 =  = x  y, =xy ,  =X, =x-~y  and H ( a , b , c ) =  

H x t ( a , b , c  ) (r = 1 0 + ( 3 - ( I H  j - 1)8-1). 

a = y , y  = 
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PROOF. If r(G/S(G))  = 7, then a(G)  = E6-, r~(x,S(G)). Therefore, at least, 
there exist three xj such that rG(xfl(G)) = 1, because a(G)=<9. Writing the 
associated equations (1) of the groups with 7 conjugate classes, we easily obtain 
the desired groups. 

THEOREM 4.6. (P7={C8, D8xC2,  Q3xC2, C4x,C~, (C4xC2)x,~C2, 
GL(2,3), SL(2,3), C4, C~5×rC2, C~3xtC2, C3x ~3, C~TxtC4, C4xtCs, C~xfQ~, 
C~3xfC6, C~xr DC3, C2 xr SL(2,3), (C2 x C2)x, (CgxfC2), (C2 x 

C2) xlt(C~xfC2), C4x)t~3, ~3X~3, C3×~D~, C,~x~C2, C3x~Q~, C]xrC3, 
Hol (C 3 , C7 x l C3), C 3 ×~ C~, C2 x (C~ x t C~), Mg, PSL (2,11)} tO {F,.61 t E N}. 

PROOF. It follows from (2.17), (2.18), (2.19), (2.20), (3.2), (4.1), (4.2) and (4.5). 

COROLLARY 4.7. r( G ) = 8 if and only if G is isomorphic to one of the groups 
with exactly eight conjugate classes listed in Table 1. 

PROOF. We argee as in (4.4). 

LEMMA 4.8. Let G be a non-nilpotent group with S(G) abelian such that 
5 <-<_ ~ (G)<= 9 and r(G/S (G)) = 8. Then G is isomorphic to one of the groups listed 

in Table 6. 

PROOF. If r(G/S(G))  = 8, then a ( G )  = E~=~ rc(x,S(G)), so at least there are 
five x~ such that ro(xfi(G))= 1, because a(G)_-< 9. Now, writing the associated 
equations (1) of the groups with 8 conjugate classes, we easily obtain the listed 
groups. 

THEOREM 4.9. qbs--{Cg, C6xC2, C~0, A7, PSL(2,13), A5×C2, C~9×tC3, 
C7x,C4, C2xD,4, (Csx C5)×~C2, (Csx C~)xr~C4, SL(2,8), C2xE4, C~x~D3, 
(C2xC2)xE3,  C2xDC3,  (C3xCs)x~C4, C~gxrC6, C5x~C8, C2×HolCs,  
SL(2,5), (C2xC2)x~DC3, (CTXCT)×tSL(2,3), C4xAIAs, PlXfC3, P2xtC3, 

C2 × (C7 x/C3), (C7 x C7) xf (SL(2, 3). Ca), Hol (C~, SD16)} O {F,,7 [ t E PGL(2,7), 
N}. 

PROOF. 

(4.8). 

It follows from (2.17), (2.18), (2.19), (2.20), (3.2), (4.1), (4.2), (4.5) and 

COROLLARY 4.10. r(G) = 9 if and only if G is isomorphic to one of the groups 

with exactly nine conjugate classes listed in Table 1. 

PROOF. We argue as in (4.4). 

LEMMA 4.11. Let G be a non-nilpotent group with S(G) abelian such that 
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TABLE 6 

G/S(G) a(G) G r(G) 

7 
8 

G 
9 

C4 x C2 9 

Csx~G 7 
8 

8 
C2 x A4 8 

7 
7 

C~xIG 9 

H xrC~ 
(G x H)x ,  G=((x )  x H)x ,  (a), x ~ =x  2, 
H(a) = HXr(a) 
(C, x C3 x H)xaC, = ({x,y)x H)x~ (a), x ° = y. 
ya=x  ', H ( a ) = H x t ( a )  

(G  x G) x, (G  x G)  = (x, y) x, (a, b), x ° = x ~, 
X b =X, y" = y 2  yt, = y  , 

H x r (C5 XrC~) 
(C,, x H)x~ (C, x, C4) = ((x) × H)×x (a,b) 
a b = a  l , x . = x  ~,x ~=x ' ,H(a ,b )=Hxr(a ,b )  

( G x  G ) x , G = ( x , y } x ~ ( a ) ,  x ° = y  ', y" =xy 
C~x~C~=(x,y,z,w)x, (a), X a = y ,  ya  = xy ,  

z ~ = y w ,  w ~ = x y z w  

c~ ×~, G = Hol(2~Ga, G)  

Pt xfC3 
G X r G  

a~= b~, b~ = a~'b; ', i = 1,2 

GL(2,3) 9 HoI(C3 x C3) 

SL(2,3). C, 7 H x t (SL(2,3). C~) 

C~×rC 7 8 P3XrC7 

8 + ( a . . 8  ') 
10+(5-al l .8 ') 

12+(9. a .  -8") 

14 

8 + ( a . . 2 0 - ' )  
10+(11 .a . .20  ') 

10 
10 

10 

9 
9 
11 

11 

8 + ( a . . 4 8  -') 

10 

5 < a(G)<= 9 and r ( G / S ( G ) )  = 9. Then G is isomorphic to one of  the fol lowing 

groups: 

(i) H xrCg,  

(ii) H ×r SL(2 ,5) ,  

(iii) Q , x , 2 C 2  = ( a l , a : , b ) x , 2 ( c )  with a~ = a7  ~, a~ = a2, b c = b -~ (r = 10), 

(iv) Q z X ,  C 2 = ( a , b ) x , ( c )  with a b = a  4, a c = a  l, b c = b  ( r = 1 0 ) ,  

(v) Q ~ x ~ ( C ; x C : ) = ( a l , a 2 , b ) x , ( c , d )  with a~ ,=a7  ', a f = a / ,  a ; = a 2 ,  

= a d -  b d = b  ( r = l l ) .  b c b - ' ,  2 -  a2 ~, 

PROOF. If r ( G / S ( G ) ) = 9 ,  we have  a ( G ) = E ~ = , r G ( x , S ( G ) ) ,  t h e r e f o r e  at 

leas t  t he re  a re  s ev en  xj such  tha t  r a ( x f i ( G ) ) =  1, b e c a u s e  a (G)__<9.  N o w  we 

o b t a i n  the  des i r ed  g r o u p s  f rom the  assoc ia ted  e q u a t i o n s  (1) for  the  g r o u p s  wi th  

exac t ly  9 c o n j u g a t e  classes.  
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THEOREM 4.12. ~9 -= {PSL(3.4), M,~, C4 x C2 x (22, Ca x. C2, (C4 x C2) x~ (72, 
C 1 7 x f C 2 ,  C24XAC6, (CsX C5)x[.~C4, (Csx Cs)XfC6 .~  (C7x C 7 ) x r D C 3 ,  P 3 x [ C 7 ,  

4 4 4 2 (Cv x C~)xrO~6 , C2x.D,o, C2x~ (C2 x C2). C2xA (C3x/C2), O~ x~, C2, Qzx.  C2, 
QlX.~C2, C~TxrCs. Cgx. E3. C]x.,C6, C25xrC4, (C4x C4)x.~C6, Hol(C3 x Ca, 
SL(2,3)), (C,, x C~,)×r SL(2,5), (C4 X C4) XA ~3}. 

PROOF. It follows from (2.17), (2.18), (2.19), (2.20), (3,2), (4.1), (4.2), (4.5), 
(4.8), and (4.11). 

COROLLARY 4.13. r(G) = 10 if and only if G is isomorphic to one of the groups 
listed in Table 2. 

LEMMA 4.14. Let G be a non-nilpotent group with S(G) abelian such that 

5 <= a (G) <-_ 9 and r(G/S (G)) = 10. Then G is isomorphic to one of the following 
groups : 

(i) H xrC,o, 
(ii) H x r (C~ x ,  C4), 
(iii) H x r (C~ x ,  Ca), 

C2x,DC3 = (x, ,x2,x3,x4)xA (a,b) with a ~ -1 . . . .  (iv) ~ a  ~ X l ~ X l X 2 ~ X 2 ~ X l ~ X 3  - 

X3X4, X4 = X3, X~ = X , ,  X b ~- XlX2,  X b = X2X3, X b = XlX3X4, 

(v) C4x~DC3=(z~,z2)×x(a,b}2 with zz" = Z 2 ,  Z2--zllz21,a _ - Zl~-zlb 1 Z2,2 zb2~_ 

Z l l Z 2 .  

PROOF. We have r(G/S(G)) = a (G)+ 1, hence I Co(x)[ = I Ce(2)[ for every 
x E G - S(G). Now, from a direct inspection of A4 for r(G) -- 10, we obtain the 
desired groups. 

THEOREM 4.15. 
(A~x C~)x~C~, C11, 
(C.xrC~), C.x~C., 

O1o = {PSL(2, 7) × C2, Sz(8), PSL (2,17), PFL (2, 8), 
C12, Ol, O2, D32, 032, SD32, C4x~3, C3XD~o, C2x 
C~x~HolCs, Cs× A , ,  (C2x C2)×~ C9, (Csx CT)xrC2, 

(C3x C3)x~C~, (C2x C2x CT)xtC3, CzX ((C3x C3)xtC. ), ~,3 x Dlo, 
(C3 x C7) xAC6, (C2 x C2 x C7)xAC6, (C2 x C2 x (~8)xhC3, (C3 x C3 x C3)xxC4, 
C2 X (C 2 X/Q8) , C3 XA C8, (C3 x C 3 x C3) XA 08, (C3 X C3) xA (C4 x)t C4), C3 xA O16, 

C3 xxD16, C3 xx SDI6, C4 xx DC3, ( C 3 X ( C 2 x C 2 ) ) x ~ . C 6 ,  C l 9 X f C 2 ,  (C5 x 

C,)XrC~, ((OaOs)q)x~C~, C29xrC4, C,,xrCs, C3, xrC6, C,gxrC., (C,x 
C5) xfC8, C 2 9 x f C 7 ,  O l x x ( C g x f C 2 ) ,  C2 x,~ DC3, Hol(C3 x C3), SL(2,7), 
Hol (C~ x C~ x C~), C~. PSL (2,7), PGL (2, 9), ~6} U {Ft,8 [ t ~ N} U 25F6 U 25F7. 

PROOF. It follows from (2.17), (2.18), (2.19), (2.20), (3.2), (4.1), (4.2), (4.5), 
(4.8), (4.11) and (4.14). 
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COROLLARY 4.16. r(G) = 11 if and only if G is isomorphic to one of the groups 
listed in Table 3. 

COROLLARY 4.17. r(G) = 12 a n d / 3 ( G ) >  1 if and only if G is isomorphic to 
one of the groups listed in Table 4. 

COROLLARY 4.18. I f r ( G ) =  13, then/3(G)_-<2. 

COROLLARY 4.19. r(G) = 14 and [3 (G) > 3 iff G ~- C~ xtC2 or G ~- C27 xtC6. 

COROLLARY4.20. S e t n E N ,  n_->15. T h e n r ( G ) = n a n d f l ( G ) = n - a w i t h  

1 <_- a _-< 10, if and only if G E {F',,,~, F',~,2, f't~,3, F't4,4, F',5,5, F't6,6, F'tT,7, F',~,8} with 
t ,=log2n,  t : = l o g 3 ( 2 n - 3 ) ,  t3=(log2(3n-8)) /2 ,  t 4= logs (4n -15) ,  ts= 

IogT(6n -35) ,  t~ = (log2(7n -48))/3, t7 = ( log3(8n - 6 3 ) ) / 2 ,  ts = logu  (10n -99) ,  

and where F',,i denotes F,,i if t is a natural number, and is otherwise dropped from 
the list. 
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